Full densification of inkjet-printed copper conductive tracks on a flexible substrate utilizing a hydrogen plasma sintering

被引:36
作者
Kwon, Young-Tae [1 ]
Lee, Young-In [2 ]
Kim, Seil [1 ]
Lee, Kun-Jae [3 ]
Choa, Yong-Ho [1 ]
机构
[1] Hanyang Univ, Dept Fus Chem Engn, Ansan 15588, South Korea
[2] Seoul Natl Univ Sci & Technol, Dept Mat Sci & Engn, Seoul 01811, South Korea
[3] Dankook Univ, Dept Energy Engn, Cheonan 31116, South Korea
关键词
Inkjet printing; Copper conductive tracks; Full densification; Plasma sintering; Flexible substrates; POLYMER; ELECTRONICS; FILMS;
D O I
10.1016/j.apsusc.2016.11.122
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Low temperature sintering techniques are crucial in developing flexible printed electronics. In this work, we demonstrate a novel hydrogen plasma sintering method that achieves a full reduction and densification of inkjet-printed patterns using a copper complex ion ink. After inkjet printing on polyethylene terephthalate (PET) substrates, both hydrogen plasma and conventional hydrogen thermal treatment were employed to compare the resulting microstructures, electrical properties and anti-oxidation behavior. The plasma treated pattern shows a fully densified microstructure with a resistivity of 3.23 mu Omega cm, while the thermally treated pattern shows a relatively poor microstructure and high resistivity. In addition, the hydrogen plasma-treated copper pattern retains its electrical resistivity for one month without any significant decrease. This novel hydrogen plasma sintering technique could be used to produce conductive patterns with excellent electrical properties, allowing for highly reliable flexible printed electronics. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1239 / 1244
页数:6
相关论文
共 25 条
[1]   Electrical sintering of nanoparticle structures [J].
Allen, Mark L. ;
Aronniemi, Mikko ;
Mattila, Tomi ;
Alastalo, Ari ;
Ojanpera, Kimmo ;
Suhonen, Mika ;
Seppa, Heikki .
NANOTECHNOLOGY, 2008, 19 (17)
[2]   Graphene: Electronic and Photonic Properties and Devices [J].
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4285-4294
[3]   Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed [J].
Chung, Wan-Ho ;
Hwang, Hyun-Jun ;
Kim, Hak-Sung .
THIN SOLID FILMS, 2015, 580 :61-70
[4]   Organic and polymer transistors for electronics [J].
Dodabalapur, Ananth .
MATERIALS TODAY, 2006, 9 (04) :24-30
[5]   Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics [J].
Farraj, Yousef ;
Grouchko, Michael ;
Magdassi, Shlomo .
CHEMICAL COMMUNICATIONS, 2015, 51 (09) :1587-1590
[6]   Direct preparation and loading of lipid and polymer vesicles using inkjets [J].
Hauschild, S ;
Lipprandt, U ;
Rumplecker, A ;
Borchert, U ;
Rank, A ;
Schubert, R ;
Förster, S .
SMALL, 2005, 1 (12) :1177-1180
[7]   High-Concentration Synthesis of Sub-10-nm Copper Nanoparticles for Application to Conductive Nanoinks [J].
Hokita, Yuki ;
Kanzaki, Mai ;
Sugiyama, Tomonori ;
Arakawa, Ryuichi ;
Kawasaki, Hideya .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (34) :19382-19389
[8]   High photovoltaic performance of inkjet printed polymer: Fullerene blends [J].
Hoth, Claudia N. ;
Choulis, Stelios A. ;
Schilinsky, Pavel ;
Brabec, Christoph J. .
ADVANCED MATERIALS, 2007, 19 (22) :3973-+
[9]   Displays develop a new flexibility [J].
Jang, Jin .
MATERIALS TODAY, 2006, 9 (04) :46-52
[10]   Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate [J].
Joo, Myungo ;
Lee, Byoungyoon ;
Jeong, Sooncheol ;
Lee, Myeongkyu .
THIN SOLID FILMS, 2012, 520 (07) :2878-2883