Lane Position Detection Based on Long Short-Term Memory (LSTM)

被引:17
作者
Yang, Wei [1 ]
Zhang, Xiang [2 ]
Lei, Qian [1 ]
Shen, Dengye [1 ]
Xiao, Ping [1 ]
Huang, Yu [1 ]
机构
[1] Chongqing Univ, Coll Automot Engn, Chongqing 400044, Peoples R China
[2] Zhejiang Univ Finance Econ, Sch Informat, Hangzhou 310018, Peoples R China
关键词
lane line detection; lane line prediction; long short-term memory; recurrent neural network; VEHICLE-HIGHWAY SYSTEMS; TRACKING; MODEL;
D O I
10.3390/s20113115
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Accurate detection of lane lines is of great significance for improving vehicle driving safety. In our previous research, by improving the horizontal and vertical density of the detection grid in the YOLO v3 (You Only Look Once, the 3th version) model, the obtained lane line (LL) algorithm, YOLO v3 (S x 2S), has high accuracy. However, like the traditional LL detection algorithms, they do not use spatial information and have low detection accuracy under occlusion, deformation, worn, poor lighting, and other non-ideal environmental conditions. After studying the spatial information between LLs and learning the distribution law of LLs, an LL prediction model based on long short-term memory (LSTM) and recursive neural network (RcNN) was established; the method can predict the future LL position by using historical LL position information. Moreover, by combining the LL information predicted with YOLO v3 (S x 2S) detection results using Dempster Shafer (D-S) evidence theory, the LL detection accuracy can be improved effectively, and the uncertainty of this system be reduced correspondingly. The results show that the accuracy of LL detection can be significantly improved in rainy, snowy weather, and obstacle scenes.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] SIGN LANGUAGE RECOGNITION WITH LONG SHORT-TERM MEMORY
    Liu, Tao
    Zhou, Wengang
    Li, Hougiang
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 2871 - 2875
  • [42] Using a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) to Classify Network Attacks
    Muhuri, Pramita Sree
    Chatterjee, Prosenjit
    Yuan, Xiaohong
    Roy, Kaushik
    Esterline, Albert
    INFORMATION, 2020, 11 (05)
  • [43] Fault Detection and Diagnosis Using Combined Autoencoder and Long Short-Term Memory Network
    Park, Pangun
    Di Marco, Piergiuseppe
    Shin, Hyejeon
    Bang, Junseong
    SENSORS, 2019, 19 (21)
  • [44] Deep long short-term memory (LSTM) networks for ultrasonic-based distributed damage assessment in concrete
    Ranjbar, Iman
    Toufigh, Vahab
    CEMENT AND CONCRETE RESEARCH, 2022, 162
  • [45] A Short-Term Load Demand Forecasting based on the Method of LSTM
    Bodur, Idris
    Celik, Emre
    Ozturk, Nihat
    10TH IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA 2021), 2021, : 171 - 174
  • [46] Convolutional Long Short-Term Memory Autoencoder-Based Feature Learning for Fault Detection in Industrial Processes
    Yu, Jianbo
    Liu, Xing
    Ye, Lyujiangnan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [47] Detection of Epileptic Seizures via Deep Long Short-Term Memory
    Patan, Krzysztof
    Rutkowski, Grzegorz
    CURRENT TRENDS IN BIOMEDICAL ENGINEERING AND BIOIMAGES ANALYSIS, 2020, 1033 : 166 - 178
  • [48] Automatic Fall Detection Using Long Short-Term Memory Network
    Magalhaes, Carlos
    Ribeiro, Joao
    Leite, Argentina
    Pires, E. J. Solteiro
    Pavao, Joao
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 359 - 371
  • [49] A forecast model of short-term wind speed based on the attention mechanism and long short-term memory
    Xing, Wang
    Qi-liang, Wu
    Gui-rong, Tan
    Dai-li, Qian
    Ke, Zhou
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 45603 - 45623
  • [50] Short-term power load forecasting using integrated methods based on long short-term memory
    WenJie Zhang
    Jian Qin
    Feng Mei
    JunJie Fu
    Bo Dai
    WenWu Yu
    Science China Technological Sciences, 2020, 63 : 614 - 624