Lane Position Detection Based on Long Short-Term Memory (LSTM)

被引:17
作者
Yang, Wei [1 ]
Zhang, Xiang [2 ]
Lei, Qian [1 ]
Shen, Dengye [1 ]
Xiao, Ping [1 ]
Huang, Yu [1 ]
机构
[1] Chongqing Univ, Coll Automot Engn, Chongqing 400044, Peoples R China
[2] Zhejiang Univ Finance Econ, Sch Informat, Hangzhou 310018, Peoples R China
关键词
lane line detection; lane line prediction; long short-term memory; recurrent neural network; VEHICLE-HIGHWAY SYSTEMS; TRACKING; MODEL;
D O I
10.3390/s20113115
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Accurate detection of lane lines is of great significance for improving vehicle driving safety. In our previous research, by improving the horizontal and vertical density of the detection grid in the YOLO v3 (You Only Look Once, the 3th version) model, the obtained lane line (LL) algorithm, YOLO v3 (S x 2S), has high accuracy. However, like the traditional LL detection algorithms, they do not use spatial information and have low detection accuracy under occlusion, deformation, worn, poor lighting, and other non-ideal environmental conditions. After studying the spatial information between LLs and learning the distribution law of LLs, an LL prediction model based on long short-term memory (LSTM) and recursive neural network (RcNN) was established; the method can predict the future LL position by using historical LL position information. Moreover, by combining the LL information predicted with YOLO v3 (S x 2S) detection results using Dempster Shafer (D-S) evidence theory, the LL detection accuracy can be improved effectively, and the uncertainty of this system be reduced correspondingly. The results show that the accuracy of LL detection can be significantly improved in rainy, snowy weather, and obstacle scenes.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Using Long Short-Term Memory (LSTM) Neural Networks to Predict Emergency Department Wait Time
    Cheng, Nok
    Kuo, Alex
    DIGITAL PERSONALIZED HEALTH AND MEDICINE, 2020, 270 : 1425 - 1426
  • [22] A long short-term memory based wind power prediction method
    Huang, Yufeng
    Ding, Min
    Fang, Zhijian
    Wang, Qingyi
    Tan, Zhili
    Lil, Danyun
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 5927 - 5932
  • [23] Flash Flood Forecasting Based on Long Short-Term Memory Networks
    Song, Tianyu
    Ding, Wei
    Wu, Jian
    Liu, Haixing
    Zhou, Huicheng
    Chu, Jinggang
    WATER, 2020, 12 (01)
  • [24] Prediction of Chinese energy structure based on Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM)
    Li, Yan
    He, Yaoyu
    Zhang, Meizhen
    ENERGY SCIENCE & ENGINEERING, 2020, 8 (08) : 2680 - 2689
  • [25] Applying Long Short-Term Memory Recurrent Neural Network for Intrusion Detection
    Althubiti, Sara
    Nick, William
    Mason, Janelle
    Yuan, Xiaohong
    Esterline, Albert
    IEEE SOUTHEASTCON 2018, 2018,
  • [26] Optimized long short-term memory (LSTM) network for performance prediction in unconventional reservoirs
    Qiu, Kaixuan
    Li, Jia
    Chen, Da
    ENERGY REPORTS, 2022, 8 : 15436 - 15445
  • [27] An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting
    Liu, Jinyuan
    Wang, Shouxi
    Wei, Nan
    Yang, Yi
    Lv, Yihao
    Wang, Xu
    Zeng, Fanhua
    ENERGIES, 2023, 16 (03)
  • [28] Lyapunov-Based Long Short-Term Memory (Lb-LSTM) Neural Network-Based Control
    Griffis, Emily J.
    Patil, Omkar Sudhir
    Bell, Zachary I.
    Dixon, Warren E.
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2976 - 2981
  • [29] Wind Power Prediction based on Recurrent Neural Network with Long Short-Term Memory Units
    Dong, Danting
    Sheng, Zhihao
    Yang, Tiancheng
    2018 IEEE INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER ENGINEERING (REPE 2018), 2018, : 34 - 38
  • [30] Short-term Load Forecasting with Distributed Long Short-Term Memory
    Dong, Yi
    Chen, Yang
    Zhao, Xingyu
    Huang, Xiaowei
    2023 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE, ISGT, 2023,