Lane Position Detection Based on Long Short-Term Memory (LSTM)

被引:17
|
作者
Yang, Wei [1 ]
Zhang, Xiang [2 ]
Lei, Qian [1 ]
Shen, Dengye [1 ]
Xiao, Ping [1 ]
Huang, Yu [1 ]
机构
[1] Chongqing Univ, Coll Automot Engn, Chongqing 400044, Peoples R China
[2] Zhejiang Univ Finance Econ, Sch Informat, Hangzhou 310018, Peoples R China
关键词
lane line detection; lane line prediction; long short-term memory; recurrent neural network; VEHICLE-HIGHWAY SYSTEMS; TRACKING; MODEL;
D O I
10.3390/s20113115
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Accurate detection of lane lines is of great significance for improving vehicle driving safety. In our previous research, by improving the horizontal and vertical density of the detection grid in the YOLO v3 (You Only Look Once, the 3th version) model, the obtained lane line (LL) algorithm, YOLO v3 (S x 2S), has high accuracy. However, like the traditional LL detection algorithms, they do not use spatial information and have low detection accuracy under occlusion, deformation, worn, poor lighting, and other non-ideal environmental conditions. After studying the spatial information between LLs and learning the distribution law of LLs, an LL prediction model based on long short-term memory (LSTM) and recursive neural network (RcNN) was established; the method can predict the future LL position by using historical LL position information. Moreover, by combining the LL information predicted with YOLO v3 (S x 2S) detection results using Dempster Shafer (D-S) evidence theory, the LL detection accuracy can be improved effectively, and the uncertainty of this system be reduced correspondingly. The results show that the accuracy of LL detection can be significantly improved in rainy, snowy weather, and obstacle scenes.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A Reversible-Logic based Architecture for Long Short-Term Memory (LSTM) Network
    Khalil, Kasem
    Dey, Bappaditya
    Kumar, Ashok
    Bayoumi, Magdy
    2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [2] Long Short-Term Memory (LSTM) Based Model for Flood Forecasting in Xiangjiang River
    Liu, Yizhuang
    Yang, Yue
    Chin, Ren Jie
    Wang, Chucai
    Wang, Changshun
    KSCE JOURNAL OF CIVIL ENGINEERING, 2023, 27 (11) : 5030 - 5040
  • [3] Long Short-Term Memory (LSTM) Based Model for Flood Forecasting in Xiangjiang River
    Yizhuang Liu
    Yue Yang
    Ren Jie Chin
    Chucai Wang
    Changshun Wang
    KSCE Journal of Civil Engineering, 2023, 27 : 5030 - 5040
  • [4] Well performance prediction based on Long Short-Term Memory (LSTM) neural network
    Huang, Ruijie
    Wei, Chenji
    Wang, Baohua
    Yang, Jian
    Xu, Xin
    Wu, Suwei
    Huang, Suqi
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [5] Time Series-based Spoof Speech Detection Using Long Short-term Memory and Bidirectional Long Short-term Memory
    Mirza, Arsalan R.
    Al-Talabani, Abdulbasit K.
    ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 2024, 12 (02): : 119 - 129
  • [6] Collective Anomaly Detection Based on Long Short-Term Memory Recurrent Neural Networks
    Bontemps, Loic
    Van Loi Cao
    McDermott, James
    Nhien-An Le-Khac
    FUTURE DATA AND SECURITY ENGINEERING, FDSE 2016, 2016, 10018 : 141 - 152
  • [7] QUANTUM LONG SHORT-TERM MEMORY
    Chen, Samuel Yen-Chi
    Yoo, Shinjae
    Fang, Yao-Lung L.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 8622 - 8626
  • [8] VCI-LSTM: Vector Choquet Integral-Based Long Short-Term Memory
    Ferrero-Jaurrieta, Mikel
    Takac, Zdenko
    Fernandez, Javier
    Horanska, Lubomira
    Dimuro, Gracaliz Pereira
    Montes, Susana
    Diaz, Irene
    Bustince, Humberto
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (07) : 2238 - 2250
  • [9] Insider Threat Detection with Long Short-Term Memory
    Lu, Jiuming
    Wong, Raymond K.
    PROCEEDINGS OF THE AUSTRALASIAN COMPUTER SCIENCE WEEK MULTICONFERENCE (ACSW 2019), 2019,
  • [10] Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting
    Le, Xuan-Hien
    Hung Viet Ho
    Lee, Giha
    Jung, Sungho
    WATER, 2019, 11 (07)