Gene editing prospects for treating inherited retinal diseases

被引:26
作者
Benati, Daniela [1 ]
Patrizi, Clarissa [1 ]
Recchia, Alessandra [1 ]
机构
[1] Univ Modena & Reggio Emilia, Life Sci, I-41125 Modena, Italy
关键词
inherited retinal disease; CRISPR; Cas genome editing; PLURIPOTENT STEM-CELLS; RETINITIS-PIGMENTOSA; CRISPR-CAS9; NUCLEASES; ADENOASSOCIATED VIRUS; GENOME; CAS9; CRISPR/CAS9; THERAPY; MOUSE; DNA;
D O I
10.1136/jmedgenet-2019-106473
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Retinal diseases (RD) include inherited retinal dystrophy (IRD), for example, retinitis pigmentosa and Leber's congenital amaurosis, or multifactorial forms, for example, age-related macular degeneration (AMD). IRDs are clinically and genetically heterogeneous in nature. To date, more than 200 genes are known to cause IRDs, which perturb the development, function and survival of rod and cone photoreceptors or retinal pigment epithelial cells. Conversely, AMD, the most common cause of blindness in the developed world, is an acquired disease of the macula characterised by progressive visual impairment. To date, available therapeutic approaches for RD include nutritional supplements, neurotrophic factors, antiangiogenic drugs for wet AMD and gene augmentation/interference strategy for IRDs. However, these therapies do not aim at correcting the genetic defect and result in inefficient and expensive treatments. The genome editing technology based on clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein (Cas) and an RNA that guides the Cas protein to a predetermined region of the genome, represents an attractive strategy to tackle IRDs without available cure. Indeed, CRISPR/Cas system can permanently and precisely replace or remove genetic mutations causative of a disease, representing a molecular tool to cure a genetic disorder. In this review, we will introduce the mechanism of CRISPR/Cas system, presenting an updated panel of Cas variants and delivery systems, then we will focus on applications of CRISPR/Cas genome editing in the retina, and, as emerging treatment options, in patient-derived induced pluripotent stem cells followed by transplantation of retinal progenitor cells into the eye.
引用
收藏
页码:437 / 444
页数:8
相关论文
共 100 条
[1]   Pluripotent stem cells and their utility in treating photoreceptor degenerations [J].
Aghaizu, Nozie D. ;
Kruczek, Kamil ;
Gonzalez-Cordero, Anai ;
Ali, Robin R. ;
Pearson, Rachael A. .
FUNCTIONAL NEURAL TRANSPLANTATION IV: TRANSLATION TO CLINICAL APPLICATION, PT B, 2017, 231 :191-223
[2]   In vivo CRISPR editing with no detectable genome-wide off-target mutations [J].
Akcakaya, Pinar ;
Bobbin, Maggie L. ;
Guo, Jimmy A. ;
Malagon-Lopez, Jose ;
Clement, Kendell ;
Garcia, Sara P. ;
Fellows, Mick D. ;
Porritt, Michelle J. ;
Firth, Mike A. ;
Carreras, Alba ;
Baccega, Tania ;
Seeliger, Frank ;
Bjursell, Mikael ;
Tsai, Shengdar Q. ;
Nguyen, Nhu T. ;
Nitsch, Roberto ;
Mayr, Lorenz M. ;
Pinello, Luca ;
Bohlool-Y, Mohammad ;
Aryee, Martin J. ;
Maresca, Marcello ;
Joung, J. Keith .
NATURE, 2018, 561 (7723) :416-+
[3]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[4]   Generation of gene-corrected human induced pluripotent stem cell lines derived from retinitis pigmentosa patient with Ser331Cysfs*5 mutation in MERTK [J].
Artero Castro, Ana ;
Long, Kathleen ;
Bassett, Andrew ;
Machuca, Candela ;
Leon, Marian ;
Avila-Fernandez, Almudena ;
Corton, Marta ;
Vidal-Puig, Toni ;
Ayuso, Carmen ;
Lukovic, Dunja ;
Erceg, Slaven .
STEM CELL RESEARCH, 2019, 34
[5]   Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model [J].
Auricchio, A ;
Kobinger, G ;
Anand, V ;
Hildinger, M ;
O'Connor, E ;
Maguire, AM ;
Wilson, JM ;
Bennett, J .
HUMAN MOLECULAR GENETICS, 2001, 10 (26) :3075-3081
[6]   In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa [J].
Bakondi, Benjamin ;
Lv, Wenjian ;
Lui, Bin ;
Jones, Melissa K. ;
Tsai, Yuchun ;
Kim, Kevin J. ;
Levy, Rachelle ;
Akhtar, Aslam Abbasi ;
Breunig, Joshua J. ;
Svendseni, Clive N. ;
Wang, Shaomei .
MOLECULAR THERAPY, 2016, 24 (03) :556-563
[7]   Precision Medicine: Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells [J].
Bassuk, Alexander G. ;
Zheng, Andrew ;
Li, Yao ;
Tsang, Stephen H. ;
Mahajan, Vinit B. .
SCIENTIFIC REPORTS, 2016, 6
[8]   Optimization of Retinal Gene Therapy for X-Linked Retinitis Pigmentosa Due to RPGR Mutations [J].
Beltran, William A. ;
Cideciyan, Artur V. ;
Boye, Shannon E. ;
Ye, Guo-Jie ;
Iwabe, Simone ;
Dufour, Valerie L. ;
Marinho, Luis Felipe ;
Swider, Malgorzata ;
Kosyk, Mychajlo S. ;
Sha, Jin ;
Boye, Sanford L. ;
Peterson, James J. ;
Witherspoon, C. Douglas ;
Alexander, John J. ;
Ying, Gui-Shuang ;
Shearman, Mark S. ;
Chulay, Jeffrey D. ;
Hauswirth, William W. ;
Gamlin, Paul D. ;
Jacobson, Samuel G. ;
Aguirre, Gustavo D. .
MOLECULAR THERAPY, 2017, 25 (08) :1866-1880
[9]  
Benati D, 2019, METHODS MOL BIOL, V1834, P59, DOI 10.1007/978-1-4939-8669-9_4
[10]   Correction of NR2E3 Associated Enhanced S-cone Syndrome Patient-specific iPSCs using CRISPR-Cas9 [J].
Bohrer, Laura R. ;
Wiley, Luke A. ;
Burnight, Erin R. ;
Cooke, Jessica A. ;
Giacalone, Joseph C. ;
Anfinson, Kristin R. ;
Andorf, Jeaneen L. ;
Mullins, Robert F. ;
Stone, Edwin M. ;
Tucker, Budd A. .
GENES, 2019, 10 (04)