Influence of single-cell RNA sequencing data integration on the performance of differential gene expression analysis

被引:2
|
作者
Kujawa, Tomasz [1 ]
Marczyk, Michal [1 ,2 ]
Polanska, Joanna [1 ]
机构
[1] Silesian Tech Univ, Dept Data Sci & Engn, Gliwice, Poland
[2] Yale Sch Med, Yale Canc Ctr, New Haven, CT USA
关键词
single-cell RNA sequencing; data integration; batch correction; differential gene expression; joint analysis;
D O I
10.3389/fgene.2022.1009316
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Large-scale comprehensive single-cell experiments are often resource-intensive and require the involvement of many laboratories and/or taking measurements at various times. This inevitably leads to batch effects, and systematic variations in the data that might occur due to different technology platforms, reagent lots, or handling personnel. Such technical differences confound biological variations of interest and need to be corrected during the data integration process. Data integration is a challenging task due to the overlapping of biological and technical factors, which makes it difficult to distinguish their individual contribution to the overall observed effect. Moreover, the choice of integration method may impact the downstream analyses, including searching for differentially expressed genes. From the existing data integration methods, we selected only those that return the full expression matrix. We evaluated six methods in terms of their influence on the performance of differential gene expression analysis in two single-cell datasets with the same biological study design that differ only in the way the measurement was done: one dataset manifests strong batch effects due to the measurements of each sample at a different time. Integrated data were visualized using the UMAP method. The evaluation was done both on individual gene level using parametric and non-parametric approaches for finding differentially expressed genes and on gene set level using gene set enrichment analysis. As an evaluation metric, we used two correlation coefficients, Pearson and Spearman, of the obtained test statistics between reference, test, and corrected studies. Visual comparison of UMAP plots highlighted ComBat-seq, limma, and MNN, which reduced batch effects and preserved differences between biological conditions. Most of the tested methods changed the data distribution after integration, which negatively impacts the use of parametric methods for the analysis. Two algorithms, MNN and Scanorama, gave very poor results in terms of differential analysis on gene and gene set levels. Finally, we highlight ComBat-seq as it led to the highest correlation of test statistics between reference and corrected dataset among others. Moreover, it does not distort the original distribution of gene expression data, so it can be used in all types of downstream analyses.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    Computational and Structural Biotechnology Journal, 2021, 19 : 3234 - 3244
  • [32] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3234 - 3244
  • [33] Expression variation analysis for tumor heterogeneity in single-cell RNA-sequencing data
    Davis-Marcisak, Emily F.
    Orugunta, Pranay
    Stein-O'Brien, Genevieve
    Puram, Sidharth V.
    Torres, Evanthia Roussos
    Hopkins, Alexander
    Jaffee, Elizabeth M.
    Favorov, Alexander V.
    Afsari, Bahman
    Goff, Loyal A.
    Fertig, Elana J.
    CANCER RESEARCH, 2019, 79 (13)
  • [34] GENE EXPRESSION Single-cell RNA sequencing of collecting duct cells
    Allison, Susan J.
    NATURE REVIEWS NEPHROLOGY, 2018, 14 (01) : 3 - 3
  • [35] Isoform-level gene expression patterns in single-cell RNA-sequencing data
    Trung Nghia Vu
    Wills, Quin F.
    Kalari, Krishna R.
    Niu, Nifang
    Wang, Liewei
    Pawitan, Yudi
    Rantalainen, Mattias
    BIOINFORMATICS, 2018, 34 (14) : 2392 - 2400
  • [36] Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
    Jong Kyoung Kim
    John C Marioni
    Genome Biology, 14
  • [37] Demultiplexing of single-cell RNA-sequencing data using interindividual variation in gene expression
    Nassiri, Isar
    Kwok, Andrew J.
    Bhandari, Aneesha
    Bull, Katherine R.
    Garner, Lucy C.
    Klenerman, Paul
    Webber, Caleb
    Parkkinen, Laura
    Lee, Angela W.
    Wu, Yanxia
    Fairfax, Benjamin
    Knight, Julian C.
    Buck, David
    Piazza, Paolo
    BIOINFORMATICS ADVANCES, 2024, 4 (01):
  • [38] Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
    Kim, Jong Kyoung
    Marioni, John C.
    GENOME BIOLOGY, 2013, 14 (01): : 1 - 12
  • [39] A new bioinformatics tool to recover missing gene expression in single-cell RNA sequencing data
    Li, Jingyi Jessica
    JOURNAL OF MOLECULAR CELL BIOLOGY, 2021, 13 (01) : 1 - 2
  • [40] An Introduction to the Analysis of Single-Cell RNA-Sequencing Data
    AlJanahi, Aisha A.
    Danielsen, Mark
    Dunbar, Cynthia E.
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2018, 10 : 189 - 196