Mechanical characterization of brain tissue in compression at dynamic strain rates

被引:200
作者
Rashid, Badar [1 ]
Destrade, Michel [1 ,2 ]
Gilchrist, Michael D. [1 ]
机构
[1] Univ Coll Dublin, Sch Mech & Mat Engn, Dublin 4, Ireland
[2] Natl Univ Ireland Galway, Sch Math Stat & Appl Math, Galway, Ireland
关键词
Traumatic brain injury (TBI); Impact; Intermediate strain rate; Friction coefficient; Ogden model; IN-VIVO; UNCONFINED COMPRESSION; CONSTITUTIVE MODEL; SOFT-TISSUES; BEHAVIOR; DEFORMATION; SHEAR; STRETCH; INJURY; VITRO;
D O I
10.1016/j.jmbbm.2012.01.022
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Traumatic brain injury (TBI) occurs when local mechanical load exceeds certain tolerance levels for brain tissue. Extensive research has been done previously for brain matter experiencing compression at quasistatic loading; however, limited data is available to model TBI under dynamic impact conditions. In this research, an experimental setup was developed to perform unconfined compression tests and stress relaxation tests at strain rates <= 90/s. The brain tissue showed a stiffer response with increasing strain rates, showing that hyperelastic models are not adequate. Specifically, the compressive nominal stress at 30% strain was 8.83 +/- 1.94, 12.8 +/- 3.10 and 16.0 +/- 1.41 kPa (mean +/- SD) at strain rates of 30, 60 and 90/s, respectively. Relaxation tests were also conducted at 10%- 50% strain with the average rise time of 10 ms, which can be used to derive time dependent parameters. Numerical simulations were performed using one-term Ogden model with initial shear modulus mu(0) = 6.06 +/- 1.44, 9.44 +/- 2.427 and 12.64 +/- 1.227 kPa (mean +/- SD) at strain rates of 30, 60 and 90/s, respectively. A separate set of bonded and lubricated tests were also performed under the same test conditions to estimate the friction coefficient mu, by adopting combined experimental-computational approach. The values of mu were 0.1 +/- 0.03 and 0.15 +/- 0.07 (mean +/- SD) at 30 and 90/s strain rates, respectively, indicating that pure slip conditions cannot be achieved in unconfined compression tests even under fully lubricated test conditions. The material parameters obtained in this study will help to develop biofidelic human brain finite element models, which can subsequently be used to predict brain injuries under impact conditions. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 38
页数:16
相关论文
共 60 条
[1]   A fiber-reinforced composite model of the viscoelastic behavior of the brainstem in shear [J].
Arbogast, KB ;
Margulies, SS .
JOURNAL OF BIOMECHANICS, 1999, 32 (08) :865-870
[2]   A high-frequency shear device for testing soft biological tissues [J].
Arbogast, KB ;
Thibault, KL ;
Pinheiro, BS ;
Winey, KI ;
Margulies, SS .
JOURNAL OF BIOMECHANICS, 1997, 30 (07) :757-759
[3]   Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury [J].
Bain, AC ;
Meaney, DF .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2000, 122 (06) :615-622
[4]   In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury [J].
Bayly, PV ;
Black, EE ;
Pedersen, RC ;
Leister, EP ;
Genin, GM .
JOURNAL OF BIOMECHANICS, 2006, 39 (06) :1086-1095
[5]  
Bilston LE, 2001, BIORHEOLOGY, V38, P335
[6]   Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact [J].
Brands, DWA ;
Peters, GWM ;
Bovendeerd, PHM .
JOURNAL OF BIOMECHANICS, 2004, 37 (01) :127-134
[7]   Fifty years of brain tissue mechanical testing: From in vitro to in vivo investigations [J].
Chatelin, Simon ;
Constantinesco, Andre ;
Willinger, Remy .
BIORHEOLOGY, 2010, 47 (5-6) :255-276
[8]   Unconfined compression of white matter [J].
Cheng, Shaokoon ;
Bilston, Lynne E. .
JOURNAL OF BIOMECHANICS, 2007, 40 (01) :117-124
[9]   Material properties of porcine parietal cortex [J].
Coats, Brittany ;
Margulies, Susan S. .
JOURNAL OF BIOMECHANICS, 2006, 39 (13) :2521-2525
[10]   Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue [J].
Darvish, KK ;
Crandall, JR .
MEDICAL ENGINEERING & PHYSICS, 2001, 23 (09) :633-645