Poster Abstract: Explainable Sensor Data-Driven Anomaly Detection in Internet of Things Systems

被引:1
作者
Hussain, Moaz Tajammal [1 ]
Perera, Charith [2 ]
机构
[1] Cardiff Univ, Sch Math, Cardiff, Wales
[2] Cardiff Univ, Sch Comp Sci & Informtat, Cardiff, Wales
来源
7TH ACM/IEEE CONFERENCE ON INTERNET-OF-THINGS DESIGN AND IMPLEMENTATION (IOTDI 2022) | 2022年
基金
英国工程与自然科学研究理事会;
关键词
Explainable AI (XAI); Internet of Things; Long Short Term Memory Networks; Sensor Data; Anomaly Detection;
D O I
10.1109/IoTDI54339.2022.00021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning or black-box models are widely used for anomaly detection in Internet of Things (IoT) data streams. We propose a technique to explain the output of a deep learning model used to detect anomalies in an IoT based industrial process. The proposed technique employs dual surrogate models to deliver black box model explanation. We have also developed an interactive dashboard to give further insights into the detected anomaly. The dashboard integrates our proposed deep learning explanation technique with historical logs to explain the detected anomaly for personas with different backgrounds.
引用
收藏
页码:80 / 81
页数:2
相关论文
共 6 条
[1]  
Assendrop J.P., 2007, DEEP LEARNING ANOMAL
[2]   A Dataset to Support Research in the Design of Secure Water Treatment Systems [J].
Goh, Jonathan ;
Adepu, Sridhar ;
Junejo, Khurum Nazir ;
Mathur, Aditya .
CRITICAL INFORMATION INFRASTRUCTURES SECURITY (CRITIS 2016), 2018, 10242 :88-99
[3]   Questioning the AI: Informing Design Practices for Explainable AI User Experiences [J].
Liao, Q. Vera ;
Gruen, Daniel ;
Miller, Sarah .
PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), 2020,
[4]   Explainable AI: A Review of Machine Learning Interpretability Methods [J].
Linardatos, Pantelis ;
Papastefanopoulos, Vasilis ;
Kotsiantis, Sotiris .
ENTROPY, 2021, 23 (01) :1-45
[5]  
Lundberg SM, 2017, ADV NEUR IN, V30
[6]  
Molnar C, 2024, Interpretable machine learning: A guide for making black box models explainable