Experimental and theoretical analysis of railway bridge noise reduction using resilient rail fasteners in Burgdorf, Switzerland

被引:8
作者
Koestli, K. P. [1 ]
Jones, C. J. C. [2 ]
Thompson, D. J. [2 ]
机构
[1] Swiss Fed Railways SBB, I FW PS, Schanzenstr 5, CH-3000 Bern, Switzerland
[2] Univ Southampton, ISVR, High Field Southampton, Southampton SO17 1BJ, England
来源
NOISE AND VIBRATION MITIGATION FOR RAIL TRANSPORTATION SYSTEMS | 2008年 / 99卷
关键词
D O I
10.1007/978-3-540-74893-9_29
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The increased noise level as trains travel over bridges is, in many situations, a source of disturbance for nearby residents. As well as the rolling noise radiated by the wheel and track, the vibration generated at the wheel-rail interface also propagates into the bridge structure and the vibration response of the components of the bridge is an important extra source of noise compared with tracks at-grade. Vibration isolation of the bridge structure from the rail is therefore used to reduce noise. This often takes the form of resilient rail fasteners. Two different elastic rail fastenings were therefore tested on a twin track bridge by the Swiss Railways (SBB). The bridge over the river Emme at Burgdorf, is a ballastless steel bridge with timbers between the rail fastener and the bridge. Hanging steel sleepers have been added between the wooden sleepers on which the track is supported to form a continuous deck under the track. To find the best elasticity for the rail fasteners, predictions of the bridge noise were made using the Norbert model. Measurements were made on the bridge with the track in its original state to provide parameters for the model. These included rail and sleeper vibration as well as pass-by noise from service passenger and freight trains at different speeds. For the two tracks, elastic rail fasteners from two suppliers were installed. The measurement after installation showed a clear noise reduction for the frequency range from 80 to 400 Hz of about 10 dB. However the reduction in A-weighted overall noise level is in the range of 2 to 4 dB, as indicated by the model. The results show similar reduction for both systems.
引用
收藏
页码:208 / +
页数:2
相关论文
共 11 条
[1]  
BEWES O, 2003, P 8 INT C I SOUND VI
[2]   Calculation of noise from railway bridges and viaducts: Experimental validation of a rapid calculation model [J].
Bewes, OG ;
Thompson, DJ ;
Jones, CJC ;
Wang, A .
JOURNAL OF SOUND AND VIBRATION, 2006, 293 (3-5) :933-943
[3]   Optimization of resilient wheels for rolling noise control [J].
Bouvet, P ;
Vincent, N ;
Coblentz, A ;
Demilly, F .
JOURNAL OF SOUND AND VIBRATION, 2000, 231 (03) :765-777
[4]   The calculation of noise from railway viaducts and bridges [J].
Harrison, MF ;
Thompson, DJ ;
Jones, CJC .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT, 2000, 214 (03) :125-134
[5]   Railway noise measurement method for pass-by noise, total effective roughness, transfer functions and track spatial decay [J].
Janssen, MHA ;
Dittricha, MG ;
De Beer, FG ;
Jones, CJC .
JOURNAL OF SOUND AND VIBRATION, 2006, 293 (3-5) :1007-1028
[6]   A calculation model for the noise from steel railway bridges [J].
Janssens, MHA ;
Thompson, DJ .
JOURNAL OF SOUND AND VIBRATION, 1996, 193 (01) :295-305
[7]   The use of decay rates to analyse the performance of railway track in rolling noise generation [J].
Jones, CJC ;
Thompson, DJ ;
Diehl, RJ .
JOURNAL OF SOUND AND VIBRATION, 2006, 293 (3-5) :485-495
[8]  
JONES CJC, 2006, 0603 ISVR U SOUTH
[9]  
MUFF W, 2007, SBB STAHLBRUCKE BURG
[10]   Experimental validation of the twins prediction program for rolling noise .1. Description of the model and method [J].
Thompson, DJ ;
Hemsworth, B ;
Vincent, N .
JOURNAL OF SOUND AND VIBRATION, 1996, 193 (01) :123-135