The Bishop-Phelps-Bollobas theorem for L(L1(μ), L∞[0,1])

被引:23
作者
Aron, Richard M. [2 ]
Choi, Yun Sung [3 ]
Garcia, Domingo [1 ]
Maestre, Manuel [1 ]
机构
[1] Univ Valencia, Dept Anal Matemat, Burjassot 46100, Valencia, Spain
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[3] POSTECH, Dept Math, Pohang 790784, South Korea
关键词
Operator; Norm attaining; Bishop-Phelps-Bollobas theorem; Measure space; NORM ATTAINING OPERATORS;
D O I
10.1016/j.aim.2011.05.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Bishop-Phelps-Bollobas theorem holds for all bounded operators from L-1(mu) into L-infinity[0, 1], where mu is a sigma-finite measure. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:617 / 628
页数:12
相关论文
共 16 条
[11]   NORM ATTAINING OPERATORS [J].
JOHNSON, J ;
WOLFE, J .
STUDIA MATHEMATICA, 1979, 65 (01) :7-19
[12]   Strong peak points and strongly norm attaining points with applications to denseness and polynomial numerical indices [J].
Kim, Jaegil ;
Lee, Han Ju .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (04) :931-947
[13]   ON OPERATORS WHICH ATTAIN THEIR NORM [J].
LINDENSTRAUSS, J .
ISRAEL JOURNAL OF MATHEMATICS, 1963, 1 (03) :139-&
[14]   NORM ATTAINING OPERATORS [J].
PARTINGTON, JR .
ISRAEL JOURNAL OF MATHEMATICS, 1982, 43 (03) :273-276
[15]   Norm attaining operators from L1(μ) into L∞(ν) [J].
Payá, R ;
Saleh, Y .
ARCHIV DER MATHEMATIK, 2000, 75 (05) :380-388
[16]   NORM ATTAINING OPERATORS AND RENORMINGS OF BANACH-SPACES [J].
SCHACHERMAYER, W .
ISRAEL JOURNAL OF MATHEMATICS, 1983, 44 (03) :201-212