Correlation dimension locating method for phase-sensitive optical time domain reflectometry

被引:4
|
作者
Shi, Yi [1 ]
Feng, Hao [1 ]
Huang, Yuqiu [1 ]
Zeng, Zhoumo [1 ]
机构
[1] Tianjin Univ, State Key Lab Precis Measurement Technol & Instru, 92 WeiJin Rd, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
phase-sensitive optical time domain reflectometry; correlation dimension; vibration sensor; INTRUSION SENSOR SYSTEM; OTDR; AMPLIFICATION;
D O I
10.1117/1.OE.55.9.091402
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The coherent fading problem may lead to location error and bad location repeatability in the conventional moving differential method (MDM). A locating method based on the correlation dimension (CDM) in phasesensitive optical time domain reflectometry is proposed. The CDM of backscattered traces is sensitive to weak vibration and immune to coherent fading, which is suitable to find out the vibration response section and then to calculate the location of the vibration source. Experimental results indicate that, compared with MDM, the standard deviation of location results, which represents location repeatability, can be improved from 25 to 2.1 m through CDM. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE).
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry
    Martins, Hugo F.
    Martin-Lopez, Sonia
    Corredera, Pedro
    Salgado, Pedro
    Frazao, Orlando
    Gonzalez-Herraez, Miguel
    OPTICS LETTERS, 2013, 38 (06) : 872 - 874
  • [32] Coherent Brillouin Random Fiber Laser for Application in Phase-sensitive Optical Time Domain Reflectometry
    Zhang, Liang
    Wang, Yuan
    Xu, Yanping
    Gao, Song
    Zhou, Dapeng
    Chen, Liang
    Bao, Xiaoyi
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [33] Influence of finite extinction ratio on performance of phase-sensitive optical time-domain reflectometry
    Ren, Meiqi
    Zhou, Da-Peng
    Chen, Liang
    Bao, Xiaoyi
    OPTICS EXPRESS, 2016, 24 (12): : 13325 - 13333
  • [34] SNR dependence of measurement stability of heterodyne phase-sensitive optical time-domain reflectometry
    Lu, Yang
    Yu, Zhijie
    Ju, Zewu
    Hu, Xiaoyang
    Chen, Mo
    Meng, Zhou
    APPLIED OPTICS, 2020, 59 (21) : 6333 - 6339
  • [35] Liquid crystal based active wavelength filter for phase-sensitive optical time domain reflectometry
    Kim, Dae-gil
    Lee, Aram
    Park, Siwoong
    Yeo, Chan Il
    Yoo, Hark
    Bae, Chelho
    Park, Hyoung Jun
    OPTICS EXPRESS, 2022, 30 (26) : 47017 - 47025
  • [36] A phase-sensitive optical time-domain reflectometry system with an electrical I/Q demodulator
    Tu, Guojie
    Yu, Benli
    Zhao, Mengmeng
    Lin, Jiping
    ADVANCED SENSOR SYSTEMS AND APPLICATIONS VIII, 2018, 10821
  • [37] Distributed Fiber Voice Sensor Based on Phase-Sensitive Optical Time-Domain Reflectometry
    Wu, Yuqing
    Gan, Jiulin
    Li, Qingyu
    Zhang, Zhishen
    Heng, Xiaobo
    Yang, Zhongmin
    IEEE PHOTONICS JOURNAL, 2015, 7 (06):
  • [38] Spectral Properties of the Signal in Phase-Sensitive Optical Time-Domain Reflectometry With Direct Detection
    Lu, Xin
    Soto, Marcelo A.
    Zhang, Li
    Thevenaz, Luc
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (06) : 1513 - 1521
  • [39] Evaluating Phase Errors in Phase-Sensitive Optical Time-Domain Reflectometry Based on I/Q Demodulation
    Lu, Xin
    Soto, Marcelo A.
    Thomas, Peter J.
    Kolltveit, Erling
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (15) : 4133 - 4141
  • [40] A Fading Tolerant Phase-Sensitive Optical Time Domain Reflectometry Based on Phasing-Locking Structure
    Zhang, Xuping
    Zheng, Yunyin
    Zhang, Chi
    Dong, Qiuhao
    Zhao, Shisong
    Liu, Jingxiao
    Wang, Feng
    Zhang, Yixin
    Xiong, Fei
    ELECTRONICS, 2021, 10 (05) : 1 - 13