A multivariate approach to determine electron beam parameters for a Monte Carlo 6 MV Linac model: Statistical and machine learning methods

被引:2
作者
Yang, Hye Jeong [1 ,2 ]
Kim, Tae Hoon [3 ]
Schaarschmidt, Thomas [3 ]
Park, Dong-Wook [4 ]
Kang, Seung Hee [4 ]
Chung, Hyun-Tai [5 ]
Suh, Tae Suk [1 ,2 ]
机构
[1] Catholic Univ Korea, Dept Biomed Engn, Coll Med, Seoul, South Korea
[2] Catholic Univ Korea, Res Inst Biomed Engn, Coll Med, Seoul, South Korea
[3] Hanyang Univ, Dept Nucl Engn, Coll Engn, Seoul, South Korea
[4] Ilsan Paik Hosp, Dept Radiat Oncol, Goyang, South Korea
[5] Seoul Natl Univ, Dept Neurosurg, Coll Med, Seoul, South Korea
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2022年 / 93卷
基金
新加坡国家研究基金会;
关键词
Linac; Electron beam parameters; Monte Carlo simulation; Statistical method; Multivariate analysis; Machine learning; PHOTON; SIMULATION; SENSITIVITY;
D O I
10.1016/j.ejmp.2021.12.005
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: This study aimed to determine the optimal initial electron beam parameters of a Linac for radiotherapy with a multivariate approach using statistical and machine-learning tools. Methods: For MC beam commissioning, a 6 MV Varian Clinac was simulated using the Geant4 toolkit. The authors investigated the relations between simulated dose distribution and initial electron beam parameters, namely, mean energy (E), energy spread (ES), and radial beam size (RS). The goodness of simulation was evaluated by the slope of differences between the simulated and the golden beam data. The best-fit combination of the electron beam parameters that minimized the slope of dose difference was searched through multivariate methods using conventional statistical methods and machine-learning tools of the scikit-learn library. Results: Simulation results with 87 combinations of the electron beam parameters were analyzed. Regardless of being univariate or multivariate, traditional statistical models did not recommend a single parameter set simultaneously minimizing slope of dose differences for percent depth dose (PDD) and lateral dose profile (LDP). Two machine learning classification modules, RandomForestClassifier and BaggingClassifier, agreed in recommending (E = 6.3 MeV, ES = +/- 5.0%, RS = 1.0 mm) for predicting simultaneous acceptance of PDD and LDP. Conclusions: The machine learning with random-forest and bagging classifier modules recommended a consistent result. It was possible to draw an optimal electron beam parameter set using multivariate methods for MC simulation of a radiotherapy 6 MV Linac.
引用
收藏
页码:38 / 45
页数:8
相关论文
共 30 条
  • [1] Efficiency improvements of x-ray simulations in EGSnrc user-codes using bremsstrahlung cross-section enhancement (BCSE)
    Ali, E. S. M.
    Rogers, D. W. O.
    [J]. MEDICAL PHYSICS, 2007, 34 (06) : 2143 - 2154
  • [2] Recent developments in GEANT4
    Allison, J.
    Amako, K.
    Apostolakis, J.
    Arce, P.
    Asai, M.
    Aso, T.
    Bagli, E.
    Bagulya, A.
    Banerjee, S.
    Barrand, G.
    Beck, B. R.
    Bogdanov, A. G.
    Brandt, D.
    Brown, J. M. C.
    Burkhardt, H.
    Canal, Ph.
    Cano-Ott, D.
    Chauvie, S.
    Cho, K.
    Cirrone, G. A. P.
    Cooperman, G.
    Cortes-Giraldo, M. A.
    Cosmo, G.
    Cuttone, G.
    Depaola, G.
    Desorgher, L.
    Dong, X.
    Dotti, A.
    Elvira, V. D.
    Folger, G.
    Francis, Z.
    Galoyan, A.
    Garnier, L.
    Gayer, M.
    Genser, K. L.
    Grichine, V. M.
    Guatelli, S.
    Gueye, P.
    Gumplinger, P.
    Howard, A. S.
    Hrivnacova, I.
    Hwang, S.
    Incerti, S.
    Ivanchenko, A.
    Ivanchenko, V. N.
    Jones, F. W.
    Jun, S. Y.
    Kaitaniemi, P.
    Karakatsanis, N.
    Karamitrosi, M.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 835 : 186 - 225
  • [3] Andreas CM, 2016, INTRO MACHINE LEARNI
  • [4] [Anonymous], SCIKIT LEARN MACHINE
  • [5] Linac photon beam fine-tuning in PRIMO using the gamma-index analysis toolkit
    Bacala, Angelina M.
    [J]. RADIATION ONCOLOGY, 2020, 15 (01)
  • [6] Simulation of photon energy spectra from Varian 2100C and 2300C/D Linacs: Simplified estimates with PENELOPE Monte Carlo models
    Baumgartner, Andreas
    Steurer, Andreas
    Maringer, Franz Josef
    [J]. APPLIED RADIATION AND ISOTOPES, 2009, 67 (11) : 2007 - 2012
  • [7] Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning
    Chetty, Indrin J.
    Curran, Bruce
    Cygler, Joanna E.
    DeMarco, John J.
    Ezzell, Gary
    Faddegon, Bruce A.
    Kawrakow, Iwan
    Keall, Paul J.
    Liu, Helen
    Ma, C. -M. Charlie
    Rogers, D. W. O.
    Seuntjens, Jan
    Sheikh-Bagheri, Daryoush
    Siebers, Jeffrey V.
    [J]. MEDICAL PHYSICS, 2007, 34 (12) : 4818 - 4853
  • [8] On Monte Carlo modeling of megavoltage photon beams: A revisited study on the sensitivity of beam parameters
    Chibani, Omar
    Moftah, Belal
    Ma, C. -M. Charlie
    [J]. MEDICAL PHYSICS, 2011, 38 (01) : 188 - 201
  • [9] Chris A., 2018, MACHINE LEARNING PYT
  • [10] Cunningham J, 1976, J INT COMM RADIAT UN, V13, DOI [10.1093/jicru/os13.1.Report24, DOI 10.1093/JICRU/OS13.1.REPORT24]