Thermoelectric Properties of Sb2Te3 Thin Films by Electron Beam Evaporation

被引:4
作者
Chang, Ho [2 ]
Kao, Mu-Jung [1 ]
Peng, Cheng-Hao [2 ]
Kuo, Chin-Guo [3 ]
Huang, Kuohsiu-David [1 ]
机构
[1] Natl Taipei Univ Technol, Dept Vehicle Engn, Taipei 10608, Taiwan
[2] Natl Taipei Univ Technol, Dept Mech Engn, Taipei 10608, Taiwan
[3] Natl Taiwan Normal Univ, Dept Mechatron Technol, Taipei 10608, Taiwan
关键词
Seebeck Coefficient; ZT Value; Electron Beam Evaporation; Resistivity; BI2TE3; PERFORMANCE;
D O I
10.1166/jnn.2011.4814
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study applies the thermoelectric grains of Sb2Te3 on conductive glass to evaporate Sb2Te3 thin films by the electron beam evaporation method. Through experimental tests with different evaporation process parameters and film annealing conditions, thin films with better Seebeck coefficient, resistivity (rho) and power fact (PF) can be obtained. Experimental results show that when thin films are annealed, their defects can be decreased accordingly, and carrier mobility can be enhanced to further elevate the conductivity of thin films. When the substrate temperature is set at 200 degrees C to fabricate Sb2Te3 thin films by the evaporation process and by annealing at 220 degrees C for 60 minutes, the Seebeck coefficient of Sb2Te3 thin films increase from 87.6 mu V/K to 177.7 mu V/K; resistivity falls from 6.21 m Omega-cm to 2.53 m Omega-cm and PF can achieve the maximum value of 1.24 10(-3) W/K-2 m. Finally, this study attempts to add indium (In) to Sb2Te3 thin films. Indium has been successfully fabricated In3SbTe2 thin films. This study also analyzes the effects of In on the thermoelectric properties of In3SbTe2 thin films.
引用
收藏
页码:7491 / 7494
页数:4
相关论文
共 16 条
[1]   New thermoelectric components using microsystem technologies [J].
Böttner, H ;
Nurnus, J ;
Gavrikov, A ;
Kühner, G ;
Jägle, M ;
Künzel, C ;
Eberhard, D ;
Plescher, G ;
Schubert, A ;
Schlereth, KH .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2004, 13 (03) :414-420
[2]   Preparation and characterization of MOCVD bismuth telluride thin films [J].
Boulouz, A ;
Giani, A ;
Pascal-Delannoy, F ;
Boulouz, M ;
Foucaran, A ;
Boyer, A .
JOURNAL OF CRYSTAL GROWTH, 1998, 194 (3-4) :336-341
[3]  
Goncalves L. M., 2008, J VACU SCI TECH A, V81, P1499
[4]  
Groubert E. Chales. E., 1988, J MATER SCI LETT, V7, P575
[5]   Quantum dot superlattice thermoelectric materials and devices [J].
Harman, TC ;
Taylor, PJ ;
Walsh, MP ;
LaForge, BE .
SCIENCE, 2002, 297 (5590) :2229-2232
[6]   Thermoelectric power of bismuth nanocomposites [J].
Heremans, JP ;
Thrush, CM ;
Morelli, DT ;
Wu, MC .
PHYSICAL REVIEW LETTERS, 2002, 88 (21) :4
[7]   Fabrication of β-BaB2O4 thin films with (00l) preferred orientation through the chemical solution deposition technique [J].
Kobayashi, T ;
Ogawa, R ;
Miyazawa, K ;
Kuwabara, M .
JOURNAL OF MATERIALS RESEARCH, 2002, 17 (04) :844-851
[8]  
Min G, 1998, ELECTRON LETT, V34, P222, DOI 10.1049/el:19980148
[9]   Cooling performance of integrated thermoelectric microcooler [J].
Min, G ;
Rowe, DM .
SOLID-STATE ELECTRONICS, 1999, 43 (05) :923-929
[10]   Improvement in High-Temperature Thermoelectric Properties by Adding Mn for Co in Ca3Co4O9 [J].
Nam, S. W. ;
Choi, J. W. ;
Hwang, H. K. ;
Park, K. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (11) :7689-7693