On the Erdos-Simonovits-Sos conjecture about the anti-Ramsey number of a cycle

被引:37
作者
Jiang, T [1 ]
West, DB
机构
[1] Miami Univ, Dept Math & Stat, Oxford, OH 45056 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.1017/S096354830300590X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a positive integer n and a family F of graphs, let f(n, F) denote the maximum number of colours in an edge-colouring of K,, such that no subgraph of K,, belonging to F has distinct colours on its edges. Erdos, Simonovits and Sos [6] conjectured for fixed k with k greater than or equal to 3 that f(n,C-k) = (k-2/2)n + O(1). This has been proved for k less than or equal to 7. For general k, in this paper we improve the previous bound of (k - 2)n - ( k 2 1) to f(n, C-k) less than or equal to (k+1/2 - 2/k-1) n - (k - 2). For even k, we further improve it to k/2 n - (k - 2). We also prove that f(n,{C-k, Ck+1, Ck+2}) less than or equal to (k-2/2 + 1/k-1) n - 1, which is sharp.
引用
收藏
页码:585 / 598
页数:14
相关论文
共 14 条
[2]  
AXENOVICH M, ARS COMBINATORIA
[3]  
Bollobas B., 1978, EXTREMAL GRAPH THEOR
[4]   Closure concepts:: A survey [J].
Broersma, H ;
Ryjácek, Z ;
Schiermeyer, I .
GRAPHS AND COMBINATORICS, 2000, 16 (01) :17-48
[5]  
Erdos P., 1959, Acta Math. Acad. Sci. Hungar., V10, P337, DOI DOI 10.1007/BF02024498
[6]  
Erdos P., 1973, Infinite and Finite Sets, Colloquia Mathematica Societatis Janos Bolyai
[7]   Edge-colorings with no large polychromatic stars [J].
Jiang, T .
GRAPHS AND COMBINATORICS, 2002, 18 (02) :303-308
[8]   Anti-Ramsey numbers of subdivided graphs [J].
Jiang, T .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 85 (02) :361-366
[9]  
JIANG T, UNPUB ERDOS SIMONOVI
[10]  
JIANG T, IN PRESS DISCRETE MA