On the Convergence Rate of Clenshaw-Curtis Quadrature for Jacobi Weight Applied to Functions with Algebraic Endpoint Singularities

被引:4
作者
Arama, Ahlam [1 ]
Xiang, Shuhuang [1 ]
Khan, Suliman [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 05期
关键词
Clenshaw-Curtis quadrature; algebraic singularities; Chebyshev coefficient; Jacobi weight; optimal convergence rate; GAUSS-LEGENDRE QUADRATURE; INTEGRATION; ACCELERATION; TRANSFORMS; BEM;
D O I
10.3390/sym12050716
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Applying the aliasing asymptotics on the coefficients of the Chebyshev expansions, the convergence rate of Clenshaw-Curtis quadrature for Jacobi weights is presented for functions with algebraic endpoint singularities. Based upon a new constructed symmetric Jacobi weight, the optimal error bound is derived for this kind of function. In particular, in this case, the Clenshaw-Curtis quadrature for a new constructed Jacobi weight is exponentially convergent. Numerical examples illustrate the theoretical results.
引用
收藏
页数:11
相关论文
共 30 条
[1]  
Aimi A, 1997, INT J NUMER METH ENG, V40, P1977, DOI 10.1002/(SICI)1097-0207(19970615)40:11<1977::AID-NME150>3.0.CO
[2]  
2-O
[3]  
[Anonymous], NUMERICAL INTEGRATIO
[4]  
[Anonymous], 1979, ADV COMPUTER METHODS
[5]  
Bernstein S., 1912, Academie Royale de Belgique Memoires, V4, P1
[6]  
Brass H., 2011, QUADRATURE THEORY TH
[7]   ASYMPTOTIC ERROR ESTIMATES FOR GAUSS QUADRATURE FORMULA [J].
CHAWLA, MM ;
JAIN, MK .
MATHEMATICS OF COMPUTATION, 1968, 22 (101) :91-&
[8]  
Davis P. J., 1984, Computer Science and Applied Mathematics, V2nd ed
[9]   Integral evaluation in the BEM solution of (hyper)singular integral equations. 2D problems on polygonal domains [J].
Diligenti, M ;
Monegato, G .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 81 (01) :29-57
[10]  
Driscoll TA., 2014, Chebfun Guide