Zn2+ inhibits mitochondrial movement in neurons by phosphatidylinositol 3-kinase activation

被引:52
作者
Malaiyandi, LM [1 ]
Honick, AS [1 ]
Rintoul, GL [1 ]
Wang, QMJ [1 ]
Reynolds, IJ [1 ]
机构
[1] Univ Pittsburgh, Dept Pharmacol, Pittsburgh, PA 15261 USA
关键词
green fluorescent protein; organelle transport; signal transduction; wortmannin; mitochondrial membrane potential; oxidative stress;
D O I
10.1523/JNEUROSCI.0868-05.2005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Mitochondria have been identified as targets of the neurotoxic actions of zinc, possibly through decreased mitochondrial energy production and increased reactive oxygen species accumulation. It has been hypothesized that impairment of mitochondrial trafficking may be a mechanism of neuronal injury. Here, we report that elevated intraneuronal zinc impairs mitochondrial trafficking. At concentrations just sufficient to cause injury, zinc rapidly inhibited mitochondrial movement without altering morphology. Zinc chelation initially restored movement, but the actions of zinc became insensitive to chelator in < 10 min. A search for downstream signaling events revealed that inhibitors of phosphatidylinositol ( PI) 3-kinase prevented this zinc effect on movement. Moreover, transient inhibition of PI 3-kinase afforded neuroprotection against zinc-mediated toxicity. These data illustrate a novel mechanism that regulates mitochondrial trafficking in neurons and also suggest that mitochondrial trafficking may be closely coupled to neuronal viability.
引用
收藏
页码:9507 / 9514
页数:8
相关论文
共 57 条
[1]   Induction of neuronal apoptosis by thiol oxidation: Putative role of intracellular zinc release [J].
Aizenman, E ;
Stout, AK ;
Harnett, KA ;
Dineley, KE ;
McLaughlin, B ;
Reynolds, IJ .
JOURNAL OF NEUROCHEMISTRY, 2000, 75 (05) :1878-1888
[2]   DYNAMICS OF MITOCHONDRIA IN LIVING CELLS - SHAPE CHANGES, DISLOCATIONS, FUSION, AND FISSION OF MITOCHONDRIA [J].
BEREITERHAHN, J ;
VOTH, M .
MICROSCOPY RESEARCH AND TECHNIQUE, 1994, 27 (03) :198-219
[3]   Zn2+ inhibits α-ketoglutarate-stimulated mitochondrial respiration and the isolated α-ketoglutarate dehydrogenase complex [J].
Brown, AM ;
Kristal, BS ;
Effron, MS ;
Shestopalov, AI ;
Ullucci, PA ;
Sheu, KFR ;
Blass, JP ;
Cooper, AJL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (18) :13441-13447
[4]   Nerve growth factor signaling regulates motility and docking of axonal mitochondria [J].
Chada, SR ;
Hollenbeck, PJ .
CURRENT BIOLOGY, 2004, 14 (14) :1272-1276
[5]   Mitochondrial movement and positioning in axons: the role of growth factor signaling [J].
Chada, SR ;
Hollenbeck, PJ .
JOURNAL OF EXPERIMENTAL BIOLOGY, 2003, 206 (12) :1985-1992
[6]  
Cheng CL, 1998, J NEUROCHEM, V71, P2401
[7]   ZINC NEUROTOXICITY IN CORTICAL CELL-CULTURE [J].
CHOI, DW ;
YOKOYAMA, M ;
KOH, J .
NEUROSCIENCE, 1988, 24 (01) :67-79
[8]   Tumor necrosis factor induces hyperphosphorylation of kinesin light chain and inhibits kinesin-mediated transport of mitochondria [J].
De Vos, K ;
Severin, F ;
Van Herreweghe, F ;
Vancompernolle, K ;
Goossens, V ;
Hyman, A ;
Grooten, J .
JOURNAL OF CELL BIOLOGY, 2000, 149 (06) :1207-1214
[9]   Expression of phosphatidylinositol (4,5) bisphosphate-specific pleckstrin homology domains alters direction but not the level of axonal transport of mitochondria [J].
De Vos, KJ ;
Sable, J ;
Miller, KE ;
Sheetz, MP .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (09) :3636-3649
[10]   Astrocytes are more resistant than neurons to the cytotoxic effects of increased [Zn2+]i [J].
Dineley, KE ;
Scanlon, JM ;
Kress, GJ ;
Stout, AK ;
Reynolds, IJ .
NEUROBIOLOGY OF DISEASE, 2000, 7 (04) :310-320