Unsupervised self-organized mapping: a versatile empirical tool for object selection, classification and redshift estimation in large surveys

被引:71
作者
Geach, James E. [1 ]
机构
[1] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
基金
美国国家航空航天局;
关键词
methods: data analysis; methods: observational; methods: statistical; STAR-FORMING GALAXIES; DIGITAL SKY SURVEY; PHOTOMETRIC REDSHIFTS; LEGACY SURVEY; COSMOS; FIELD; COLORS; POPULATION; RELEASE;
D O I
10.1111/j.1365-2966.2011.19913.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present an application of unsupervised machine learning the self-organized map (SOM) as a tool for visualizing, exploring and mining the catalogues of large astronomical surveys. Self-organization culminates in a low-resolution representation of the topology of a parameter volume, and this can be exploited in various ways pertinent to astronomy. Using data from the Cosmological Evolution Survey (COSMOS), we demonstrate two key astronomical applications of the SOM: (i) object classification and selection, using galaxies with active galactic nuclei as an example, and (ii) photometric redshift estimation, illustrating how SOMs can be used as totally empirical predictive tools. With a training set of similar to 3800 galaxies with zspec= 1, we achieve photometric redshift accuracies competitive with other (mainly template fitting) techniques that use a similar number of photometric bands [s(?z) = 0.03 with a similar to 2 per cent outlier rate when using u* band to 8 m photometry]. We also test the SOM as a photo-z tool using the PHoto-z Accuracy Testing (PHAT) synthetic catalogue of Hildebrandt et al., which compares several different photo-z codes using a common input/training set. We find that the SOM can deliver accuracies that are competitive with many of the established template fitting and empirical methods. This technique is not without clear limitations, which are discussed, but we suggest it could be a powerful tool in the era of extremely large petabyte data bases where efficient data mining is a paramount concern.
引用
收藏
页码:2633 / 2645
页数:13
相关论文
共 38 条
[1]  
Aihara H, 2011, ASTROPHYS J SUPPL S, V193, DOI 10.1088/0067-0049/193/2/29
[2]  
Alahakoon D., 1998, Proceedings of the 5th International Conference on Soft Computing and Information/Intelligent Systems. Methodologies for the Conception, Design and Application of Soft Computing, P907
[3]  
[Anonymous], P WORKSH SELF ORG MA
[4]  
ARNOUTS S, 1999, MNRAS, V310, P54
[5]   Bayesian photometric redshift estimation [J].
Benítez, N .
ASTROPHYSICAL JOURNAL, 2000, 536 (02) :571-583
[6]   DISCOVERY OF z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS [J].
Bouwens, R. J. ;
Illingworth, G. D. ;
Oesch, P. A. ;
Stiavelli, M. ;
van Dokkum, P. ;
Trenti, M. ;
Magee, D. ;
Labbe, I. ;
Franx, M. ;
Carollo, C. M. ;
Gonzalez, V. .
ASTROPHYSICAL JOURNAL LETTERS, 2010, 709 (02) :L133-L137
[7]   The first release COSMOS optical and near-IR data and catalog [J].
Capak, P. ;
Aussel, H. ;
Ajiki, M. ;
McCracken, H. J. ;
Mobasher, B. ;
Scoville, N. ;
Shopbell, P. ;
Taniguchi, Y. ;
Thompson, D. ;
Tribiano, S. ;
Sasaki, S. ;
Blain, A. W. ;
Brusa, M. ;
Carilli, C. ;
Comastri, A. ;
Carollo, C. M. ;
Cassata, P. ;
Colbert, J. ;
Ellis, R. S. ;
Elvis, M. ;
Giavalisco, M. ;
Green, W. ;
Guzzo, L. ;
Hasinger, G. ;
Ilbert, O. ;
Impey, C. ;
Jahnke, K. ;
Kartaltepe, J. ;
Kneib, J.-P. ;
Koda, J. ;
Koekemoer, A. ;
Komiyama, Y. ;
Leauthaud, A. ;
Lefevre, O. ;
Lilly, S. ;
Liu, C. ;
Massey, R. ;
Miyazaki, S. ;
Murayama, T. ;
Nagao, T. ;
Peacock, J. A. ;
Pickles, A. ;
Porciani, C. ;
Renzini, A. ;
Rhodes, J. ;
Rich, M. ;
Salvato, M. ;
Sanders, D. B. ;
Scarlata, C. ;
Schiminovich, D. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2007, 172 (01) :99-116
[8]   COLORS AND MAGNITUDES PREDICTED FOR HIGH REDSHIFT GALAXIES [J].
COLEMAN, GD ;
WU, CC ;
WEEDMAN, DW .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1980, 43 (03) :393-416
[9]   ANNz:: Estimating photometric redshifts using artificial neural networks [J].
Collister, AA ;
Lahav, O .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2004, 116 (818) :345-351
[10]   A new photometric technique for the joint selection of star-forming and passive galaxies at 1.4 ≤ z ≤ 2.5 [J].
Daddi, E ;
Cimatti, A ;
Renzini, A ;
Fontana, A ;
Mignoli, M ;
Pozzetti, L ;
Tozzi, P ;
Zamorani, G .
ASTROPHYSICAL JOURNAL, 2004, 617 (02) :746-764