共 74 条
Quantifying the Mechanisms of Atmospheric Circulation Response to Greenhouse Gas Increases in a Forcing-Feedback Framework
被引:1
作者:
Zhang, Pengfei
[1
,2
]
Chen, Gang
[1
]
Ming, Yi
[3
]
机构:
[1] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA
[2] Penn State Univ, Dept Meteorol & Atmospher Sci, University Pk, PA 16802 USA
[3] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA
关键词:
Atmospheric circulation;
Climate change;
Eddies;
Feedback;
General circulation models;
Hadley circulation;
EDDY-DRIVEN JET;
HADLEY CIRCULATION;
SURFACE WESTERLIES;
WATER-VAPOR;
CLIMATE;
VARIABILITY;
LATITUDE;
SPEED;
SENSITIVITY;
EXPANSION;
D O I:
10.1175/JCLI-D-20-0778.1
中图分类号:
P4 [大气科学(气象学)];
学科分类号:
0706 ;
070601 ;
摘要:
While there is substantial evidence for tropospheric jet shift and Hadley cell expansion in response to greenhouse gas increases, quantitative assessments of individual mechanisms and feedback for atmospheric circulation changes remain lacking. We present a new forcing-feedback analysis on circulation response to increasing CO2 concentration in an aquaplanet atmospheric model. This forcing-feedback framework explicitly identifies a direct zonal wind response by holding the zonal mean zonal wind exerting on the zonal advection of eddies unchanged, in comparison with the additional feedback induced by the direct response in zonal mean zonal wind. It is shown that the zonal advection feedback accounts for nearly half of the changes to the eddy-driven jet shift and Hadley cell expansion, largely contributing to the subtropical precipitation decline, when the CO2 concentration varies over a range of climates. The direct response in temperature displays the well-known tropospheric warming pattern to CO2 increases, but the feedback exhibits negative signals. The direct response in eddies is characterized by a reduction in upward wave propagation and a poleward shift of midlatitude eddy momentum flux (EMF) convergence, likely due to an increase in static stability from moist thermodynamic adjustment. In contrast, the feedback features a dipole pattern in EMF that further shifts and strengthens midlatitude EMF convergence, resulting from the upper-level zonal wind increase seen in the direct response. Interestingly, the direct response produces an increase in eddy kinetic energy (EKE), but the feedback weakens EKE. Thus, the forcing-feedback framework highlights the distinct effect of zonal mean advecting wind from direct thermodynamic effects in atmospheric response to greenhouse gas increases.
引用
收藏
页码:7005 / 7022
页数:18
相关论文