Higher algebraic K-theory for twisted Laurent series rings over orders and semisimple algebras

被引:2
作者
Kuku, Aderemi [1 ,2 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Max Planck Inst Math, D-5300 Bonn, Germany
关键词
K-theory; twisted Laurent series rings; semisimple algebras; orders; virtually infinite cyclic group;
D O I
10.1007/s10468-008-9085-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be the ring of integers in a number field F, Lambda any R-order in a semisimple F-algebra Sigma, alpha an R-automorphism of Lambda. Denote the extension of alpha to Sigma also by alpha. Let Lambda(alpha)[T] ( resp. Sigma(alpha)[T] be the alpha-twisted Laurent series ring over Lambda (resp. Sigma). In this paper we prove that (i) There exist isomorphisms Q circle times K-n(Lambda(alpha)[T]) similar or equal to Q circle times. Gn(Lambda(alpha)[T]) similar or equal to Q circle times K-n(Sigma(alpha)[T]) for all n >= 1. (ii) G(n)(pr) (Lambda(alpha) [T], (Z)overcap>(l)) similar or equal to G(n) (Lambda(alpha)[T], (Z) over cap (l)) is an l-complete profinite Abelian group for all n >= 2. (iii) divG(n)(pr) (Lambda(alpha)[T], (Z) over cap (l)) = 0 for all n >= 2. (iv) G(n)(Lambda(alpha)[T]) -> G(n)(pr) (Lambda(alpha) [T], (Z) over cap (l)) is injective with uniquely l-divisible cokernel (for all n >= 2). (v) K-1(Lambda), K-1 (Lambda(alpha)[T]) are finitely generated Abelian groups.
引用
收藏
页码:355 / 368
页数:14
相关论文
共 19 条
[1]  
Bass H., 1968, Algebraic K-theory
[2]  
BOREL A, 1984, ANN SCI ECOLE NORM S, V7, P235
[3]  
BROWDER W, 1978, SPRINGER LECT NOTES, V657, P40
[4]   LOCALIZATION IN LOWER ALGEBRAIC K-THEORY [J].
CARTER, DW .
COMMUNICATIONS IN ALGEBRA, 1980, 8 (07) :603-622
[5]  
CHARNEY RM, 1984, LECT NOTES MATH, V1046, P47
[6]   On the exponent of the NK0-groups of virtually infinite cyclic groups [J].
Connolly, FX ;
Prassidis, S .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (02) :180-195
[7]  
Farrell F.T., 1970, P S PURE MATH, VXVII, P192
[8]  
FARRELL FT, 1993, J AM MATH SOC, V6, P249
[9]  
FARRELL FT, 1995, LOWER ALGEBRAIC K TH, V9, P13
[10]   Profinite and continuous higher K-theory of exact categories, orders, and group rings [J].
Kuku, A .
K-THEORY, 2001, 22 (04) :367-392