Harnack inequalities for evolving hypersurfaces on the sphere

被引:4
作者
Bryan, Paul [1 ]
Ivaki, Mohammad N. [2 ]
Scheuer, Julian [3 ]
机构
[1] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
[2] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[3] Albert Ludwigs Univ, Math Inst, Ernst Zermelo Str 1, D-79104 Freiburg, Germany
基金
英国工程与自然科学研究理事会; 奥地利科学基金会; 欧洲研究理事会;
关键词
CONVEX HYPERSURFACES; CURVATURE FLOWS;
D O I
10.4310/CAG.2018.v26.n5.a2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Harnack inequalities for hypersurfaces flowing on the unit sphere by p-powers of a strictly monotone, 1-homogeneous, convex, curvature function f, 0 < p <= 1. If f is the mean curvature, we obtain stronger Harnack inequalities.
引用
收藏
页码:1047 / 1077
页数:31
相关论文
共 27 条
[1]   HARNACK INEQUALITIES FOR EVOLVING HYPERSURFACES [J].
ANDREWS, B .
MATHEMATISCHE ZEITSCHRIFT, 1994, 217 (02) :179-197
[3]   Pinching estimates and motion of hypersurfaces by curvature functions [J].
Andrews, Ben .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 :17-33
[4]   Contracting convex hypersurfaces by curvature [J].
Andrews, Ben ;
McCoy, James ;
Zheng, Yu .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 47 (3-4) :611-665
[6]  
Bryan P., 2015, ARXIV150802821
[7]   Classification of Convex Ancient Solutions to Curve Shortening Flow on the Sphere [J].
Bryan, Paul ;
Louie, Janelle .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (02) :858-872
[8]   ON HARNACK INEQUALITY AND ENTROPY FOR THE GAUSSIAN CURVATURE FLOW [J].
CHOW, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (04) :469-483
[9]   Space-time Formulation of Harnack Inequalities for Curvature Flows of Hypersurfaces [J].
Chow, Bennett ;
Chu, Sun-Chin .
JOURNAL OF GEOMETRIC ANALYSIS, 2001, 11 (02) :219-231
[10]  
Gerhardt C., 2006, SERIES GEOMETRY TOPO, V39