A MODEL FOR BIOLOGICAL DYNAMIC NETWORKS

被引:1
作者
Marigo, Alessia [1 ]
Piccoli, Benedetto [1 ,2 ]
机构
[1] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
[2] Rutgers State Univ, Ctr Computat & Integrat Biol, Camden, NJ 08102 USA
关键词
Dynamic networks; Biological networks; Isomorphic graphs;
D O I
10.3934/nhm.2011.6.647
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main aim of this paper is to introduce a mathematical frame work to study stochastically evolving networks. More precisely, we provide a common language and suitable tools to study systematically the probability distribution of topological characteristics, which, in turn, play a key role in applications, especially for biological networks. The latter is possible via suitable definition of a random network process and new results for graph isomorphism, which, under suitable generic assumptions, can be stated in terms of the graph walk matrix and computed in polynomial time.
引用
收藏
页码:647 / 663
页数:17
相关论文
共 17 条
[1]  
Alon U., 2007, INTRO SYSTEMS BIOL D
[2]  
[Anonymous], 2007, Random Graph Dynamics
[3]  
Barabasi A.L., 2003, American journal of Physics, V71, P409, DOI [10.1119/1.1538577, DOI 10.1119/1.1538577]
[4]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[5]  
Bollobás B, 2003, SIAM PROC S, P132
[6]   State-estimators for chemical reaction networks of Feinberg-Horn-Jackson zero deficiency type [J].
Chaves, M ;
Sontag, ED .
EUROPEAN JOURNAL OF CONTROL, 2002, 8 (04) :343-359
[7]   A general model of web graphs [J].
Cooper, C ;
Frieze, A .
RANDOM STRUCTURES & ALGORITHMS, 2003, 22 (03) :311-335
[8]  
Cvetkovic D., 1995, Spectra of Graphs: Theory and Applications
[9]   Modular cell biology: retroactivity and insulation [J].
Del Vecchio, Domitilla ;
Ninfa, Alexander J. ;
Sontag, Eduardo D. .
MOLECULAR SYSTEMS BIOLOGY, 2008, 4 (1)
[10]  
Erdos P., 1959, PUBL MATH-DEBRECEN, V6, P290, DOI DOI 10.5486/PMD.1959.6.3-4.12