Generic dynamics of 4-dimensional C2 Hamiltonian systems

被引:22
作者
Bessa, Mario [1 ]
Dias, Joao Lopes [2 ]
机构
[1] Univ Porto, Ctr Matemat, P-4169007 Oporto, Portugal
[2] Univ Tecn Lisboa, ISEG, Dept Matemat, P-1200781 Lisbon, Portugal
关键词
D O I
10.1007/s00220-008-0500-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamical behaviour of Hamiltonian flows defined on 4-dimensional compact symplectic manifolds. We find the existence of a C-2-residual set of Hamiltonians for which there is an open mod 0 dense set of regular energy surfaces each either being Anosov or having zero Lyapunov exponents almost everywhere. This is in the spirit of the Bochi-Mane dichotomy for area-preserving diffeomorphisms on compact surfaces [2] and its continuous-time version for 3-dimensional volume-preserving flows [1].
引用
收藏
页码:597 / 619
页数:23
相关论文
共 17 条
[11]  
Mane R, 1996, Pitman Res. Notes Math. Ser., V362, P110
[12]  
MARKUS L, 1974, GENERIC HAMILTONIAN, V144
[13]   ON VOLUME ELEMENTS ON A MANIFOLD [J].
MOSER, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 120 (02) :286-&
[14]   QUASI-ELLIPTIC PERIODIC POINTS IN CONSERVATIVE DYNAMICAL-SYSTEMS [J].
NEWHOUSE, SE .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (05) :1061-1087
[15]  
Oseledets V., 1968, Trans. Moscow Math. Soc, V19, P197
[16]  
ROBINSON C, 1971, LECT HAMILTONIAN SYS
[17]  
Vivier T., 2005, ROBUSTLY TRANSITIVE