Generic dynamics of 4-dimensional C2 Hamiltonian systems

被引:22
作者
Bessa, Mario [1 ]
Dias, Joao Lopes [2 ]
机构
[1] Univ Porto, Ctr Matemat, P-4169007 Oporto, Portugal
[2] Univ Tecn Lisboa, ISEG, Dept Matemat, P-1200781 Lisbon, Portugal
关键词
D O I
10.1007/s00220-008-0500-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamical behaviour of Hamiltonian flows defined on 4-dimensional compact symplectic manifolds. We find the existence of a C-2-residual set of Hamiltonians for which there is an open mod 0 dense set of regular energy surfaces each either being Anosov or having zero Lyapunov exponents almost everywhere. This is in the spirit of the Bochi-Mane dichotomy for area-preserving diffeomorphisms on compact surfaces [2] and its continuous-time version for 3-dimensional volume-preserving flows [1].
引用
收藏
页码:597 / 619
页数:23
相关论文
共 17 条
[1]  
[Anonymous], 2004, ADV DYNAMICAL SYSTEM
[2]   The Lyapunov exponents of generic zero divergence three-dimensional vector fields [J].
Bessa, Mario .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 :1445-1472
[3]   The Lyapunov exponents of generic volume-preserving and symplectic maps [J].
Bochi, J ;
Viana, M .
ANNALS OF MATHEMATICS, 2005, 161 (03) :1423-1485
[4]   Genericity of zero Lyapunov exponents [J].
Bochi, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 :1667-1696
[5]   Dichotomies between uniform hyperbolicity and zero Lyapunov exponents for SL(2, R) cocycles [J].
Bochi, Jairo ;
Fayad, Bassam .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2006, 37 (03) :307-349
[6]  
Bonatti C, 2005, DYNAMICS UNIFORM HYP, V102
[7]  
BOWEN R, 1975, EQUILIBRIUM STATES E, V470
[8]  
Doering C., 1987, PITMAN RES NOTES MAT, V160, P59
[9]   Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor [J].
Hunt, TJ ;
MacKay, RS .
NONLINEARITY, 2003, 16 (04) :1499-1510
[10]  
Mane R., 1983, P INT C MATHEMATICIA, V2, P1259