Ion accumulation in different organs of green bean genotypes grown under salt stress

被引:42
|
作者
Yasar, F. [1 ]
Uzal, O.
Tufenkci, S.
Yildiz, K. [2 ]
机构
[1] Yuzuncu Yil Univ, Fac Agr, Dept Hort, TR-65080 Van, Turkey
[2] Univ Gazi Osman Pasa, Fac Agr, Tokat, Turkey
关键词
Phaseolus vulgaris; green bean genotypes; salt stress; plant parts; ion accumulation;
D O I
10.17221/3469-PSE
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Salt-tolerant Gevas Sink 57 (GS57) genotypes and salt-sensitive 4F-89 French variety, previously determined in our preliminary study, were used in the study. The genotype and the variety exposed to 100mM NaCl application developed different mechanisms to be protected against toxic effects of Na+ ion. Salt-sensitive 4F-89 French variety let Na+ accumulate in all organs. On the contrary, salt-tolerant GS57 did not avoid salt and acted selectively among ions; the majority of toxic ion Na+ accumulated in old leaves and shoots and the plants did not transport them into young leaves. K+ accumulation was high in organs in which Na+ concentrations were low, and vice versa; Na+ content was low in young and high in old leaves of GS57, but K+ content was opposite. Ca2+ content in young leaves of GS57 and 4F-89 decreased; still its content was the highest of all examined ions found in young leaves. This indicated that beans can develop different mechanisms to accept and adapt high levels of salt. Storing toxic ion (Na+) in old leaves and having a limited transmission of salt into young leaves serves as a protection from detrimental effects of salt.
引用
收藏
页码:476 / 480
页数:5
相关论文
共 50 条
  • [31] EFFECT OF SALICYLIC ACID ON THE DRY MATTER AND NITROGEN ACCUMULATION, PARTITIONING AND TRANSLOCATION IN TWO CONTRASTING RICE GENOTYPES UNDER SALT STRESS
    Sha, Han-Jing
    Liu, Hua-Long
    Hu, Bo-Wen
    Gu, Jiao-Jiao
    Hu, Wen-Cheng
    Jia, Yan
    Wang, Xin-Peng
    Chang, Hui-Lin
    Zhao, Hong-Wei
    PAKISTAN JOURNAL OF BOTANY, 2019, 51 (05) : 1541 - 1550
  • [32] Effect of salt stress on Growth and Ion accumulation of alfalfa (Medicago sativa L.) cultivars
    Ashrafi, Ensiye
    Razmjoo, Jamshid
    Zahedi, Morteza
    JOURNAL OF PLANT NUTRITION, 2018, 41 (07) : 818 - 831
  • [33] Physiological and biochemical responses of two faba bean (Vicia faba L.) varieties grown in vitro to salt stress
    Desouky A.F.
    Ahmed A.H.H.
    Reda A.A.
    Stȕtzel H.
    Hanafy M.S.
    Journal of Crop Science and Biotechnology, 2023, 26 (2) : 151 - 160
  • [34] Effect of Salt Stress on Three Green Bean (Phaseolus vulgaris L.) Cultivars
    Assimakopoulou, Anna
    Salmas, Ioannis
    Nifakos, Kallimachos
    Kalogeropoulos, Panagiotis
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2015, 43 (01) : 113 - 118
  • [35] Comparative transcriptome analysis of two maize genotypes with different tolerance to salt stress
    Mohasseli, Taher
    Rahmani, Razgar Seyed
    Darvishzadeh, Reza
    Dezhsetan, Sara
    Marchal, Kathleen
    CEREAL RESEARCH COMMUNICATIONS, 2022, 50 (04) : 797 - 810
  • [36] Comparative transcriptome analysis of two maize genotypes with different tolerance to salt stress
    Taher Mohasseli
    Razgar Seyed Rahmani
    Reza Darvishzadeh
    Sara Dezhsetan
    Kathleen Marchal
    Cereal Research Communications, 2022, 50 : 797 - 810
  • [37] POLYOL CONCENTRATIONS IN ASPERGILLUS-REPENS GROWN UNDER SALT STRESS
    KELAVKAR, UP
    CHHATPAR, HS
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 1993, 9 (05) : 579 - 582
  • [38] Biosynthetic pathways of glycerol accumulation under salt stress in Aspergillus nidulans
    Redkar, RJ
    Locy, RD
    Singh, NK
    EXPERIMENTAL MYCOLOGY, 1995, 19 (04): : 241 - 246
  • [39] Growth response of the salt-sensitive and the salt-tolerant sugarcane genotypes to potassium nutrition under salt stress
    Ashraf, Muhammad
    Afzal, Muhammad
    Ahmad, Rashid
    Maqsood, Muhammad A.
    Shahzad, Sher M.
    Tahir, Mukkram A.
    Akhtar, Naeem
    Aziz, Ahsan
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2012, 58 (04) : 385 - 398
  • [40] Mung Bean Genotypes Demonstrate a Correlative Response at Biochemical and Molecular Level Under Salinity Stress
    Nasim Khalifeh
    Manijeh Sabokdast Nodehi
    Alireza Abbasi
    Sajjad Sobhanverdi
    Gesunde Pflanzen, 2023, 75 : 911 - 919