Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation

被引:402
|
作者
He, Xin [1 ,2 ]
Zhou, Yong [1 ,2 ]
Zhao, Jiaqi [1 ,2 ]
Zhang, Di [1 ,2 ]
Yao, Rui [1 ,2 ]
Xue, Yong [3 ,4 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] Minist Educ Peoples Republ China, Engn Res Ctr Mine Digitizat, Xuzhou 221116, Jiangsu, Peoples R China
[3] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou 221116, Jiangsu, Peoples R China
[4] Univ Derby, Sch Elect Comp & Math, Derby DE22 1GB, England
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Transformers; Semantics; Image segmentation; Feature extraction; Convolutional neural networks; Remote sensing; Task analysis; Global information embedding; remote sensing (RS); semantic segmentation; Swin transformer; CLASSIFICATION; RECOGNITION;
D O I
10.1109/TGRS.2022.3144165
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Global context information is essential for the semantic segmentation of remote sensing (RS) images. However, most existing methods rely on a convolutional neural network (CNN), which is challenging to directly obtain the global context due to the locality of the convolution operation. Inspired by the Swin transformer with powerful global modeling capabilities, we propose a novel semantic segmentation framework for RS images called ST-U-shaped network (UNet), which embeds the Swin transformer into the classical CNN-based UNet. ST-UNet constitutes a novel dual encoder structure of the Swin transformer and CNN in parallel. First, we propose a spatial interaction module (SIM), which encodes spatial information in the Swin transformer block by establishing pixel-level correlation to enhance the feature representation ability of occluded objects. Second, we construct a feature compression module (FCM) to reduce the loss of detailed information and condense more small-scale features in patch token downsampling of the Swin transformer, which improves the segmentation accuracy of small-scale ground objects. Finally, as a bridge between dual encoders, a relational aggregation module (RAM) is designed to integrate global dependencies from the Swin transformer into the features from CNN hierarchically. Our ST-UNet brings significant improvement on the ISPRS-Vaihingen and Potsdam datasets, respectively. The code will be available at <uri>https://github.com/XinnHe/ST-UNet</uri>.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] SEMANTIC SEGMENTATION FOR REMOTE SENSING IMAGES BASED ON SWIN-TRANSFORMER AND MULTISCALE FEATURE REFINEMENT
    Zhu, Shengyu
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6370 - 6373
  • [32] Adaptive enhanced swin transformer with U-net for remote sensing image segmentation*
    Gu, Xingjian
    Li, Sizhe
    Ren, Shougang
    Zheng, Hengbiao
    Fan, Chengcheng
    Xu, Huanliang
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102
  • [33] High-Order Semantic Decoupling Network for Remote Sensing Image Semantic Segmentation
    Zheng, Chengyu
    Nie, Jie
    Wang, Zhaoxin
    Song, Ning
    Wang, Jingyu
    Wei, Zhiqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [34] AFNet: Adaptive Fusion Network for Remote Sensing Image Semantic Segmentation
    Liu, Rui
    Mi, Li
    Chen, Zhenzhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7871 - 7886
  • [35] Axis-Based Transformer UNet for RGB Remote Sensing Image Denoising
    Zhu, Zhiliang
    Zhang, Siyi
    Qiu, Leiningxin
    Wang, Hui
    Luo, Guoliang
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2515 - 2519
  • [36] Efficient Transformer for Remote Sensing Image Segmentation
    Xu, Zhiyong
    Zhang, Weicun
    Zhang, Tianxiang
    Yang, Zhifang
    Li, Jiangyun
    REMOTE SENSING, 2021, 13 (18)
  • [37] Memory-Augmented Transformer for Remote Sensing Image Semantic Segmentation
    Zhao, Xin
    Guo, Jiayi
    Zhang, Yueting
    Wu, Yirong
    REMOTE SENSING, 2021, 13 (22)
  • [38] Novel Convolutions for Semantic Segmentation of Remote Sensing Images
    Xiao, Ruijie
    Zhong, Chuan
    Zeng, Wankang
    Cheng, Ming
    Wang, Cheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [39] Semantic Segmentation With Attention Mechanism for Remote Sensing Images
    Zhao, Qi
    Liu, Jiahui
    Li, Yuewen
    Zhang, Hong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [40] MCAT-UNet: Convolutional and Cross-Shaped Window Attention Enhanced UNet for Efficient High-Resolution Remote Sensing Image Segmentation
    Wang, Tao
    Xu, Chao
    Liu, Bin
    Yang, Guang
    Zhang, Erlei
    Niu, Dangdang
    Zhang, Hongming
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 9745 - 9758