Fusion pilot plant performance and the role of a sustained high power density tokamak

被引:28
作者
Menard, J. E. [1 ]
Grierson, B. A. [1 ,2 ]
Brown, T. [1 ]
Rana, C. [1 ]
Zhai, Y. [1 ]
Poli, F. M. [1 ]
Maingi, R. [1 ]
Guttenfelder, W. [1 ]
Snyder, P. B. [2 ,3 ]
机构
[1] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[2] Gen Atom, San Diego, CA USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN USA
关键词
fusion pilot plant; steady-state tokamak; core-edge integration; high-temperature superconductors; liquid metals; PLASMA-CONFINEMENT; ASDEX UPGRADE; CURRENT DRIVE; ASPECT-RATIO; CHAPTER; DIVERTOR; DEMO; RADIATION; FACILITY; COMPACT;
D O I
10.1088/1741-4326/ac49aa
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent U.S. fusion development strategy reports all recommend that the U.S. should pursue innovative science and technology to enable construction of a fusion pilot plant (FPP) that produces net electricity from fusion at low capital cost. Compact tokamaks have been proposed as a means of potentially reducing the capital cost of a FPP. However, compact steady-state tokamak FPPs face the challenge of integrating a high fraction of self-driven current with high core confinement, plasma pressure, and high divertor parallel heat flux. This integration is sufficiently challenging that a dedicated sustained-high-power-density (SHPD) tokamak facility is proposed by the U.S. community as the optimal way to close this integration gap. Performance projections for the steady-state tokamak FPP regime are presented and a preliminary SHPD device with substantial flexibility in lower aspect ratio (A = 2-2.5), shaping, and divertor configuration to narrow gaps to an FPP is described.
引用
收藏
页数:20
相关论文
共 121 条
[1]   DTT-Divertor Tokamak Test facility: A testbed for DEMO [J].
Ambrosino, R. .
FUSION ENGINEERING AND DESIGN, 2021, 167
[2]  
[Anonymous], 2021, National Academies Press, V10, P1722625991, DOI [http://doi.org/10.17226/25991, DOI 10.17226/25991, 10.2478/JOHH-2021-0022]
[3]   Scenario development during commissioning operations on the National Spherical Torus Experiment Upgrade [J].
Battaglia, D. J. ;
Boyer, M. D. ;
Gerhardt, S. ;
Mueller, D. ;
Myers, C. E. ;
Guttenfelder, W. ;
Menard, J. E. ;
Sabbagh, S. A. ;
Scotti, F. ;
Bedoya, F. ;
Bell, R. E. ;
Berkery, J. W. ;
Diallo, A. ;
Ferraro, N. ;
Kaye, S. M. ;
Jaworski, M. A. ;
LeBlanc, B. P. ;
Ono, M. ;
Park, J. -K. ;
Podesta, M. ;
Raman, R. ;
Soukhanovskii, V. .
NUCLEAR FUSION, 2018, 58 (04)
[4]   Investigations of the first-wall erosion of DEMO with the CELLSOR code [J].
Beckers, M. ;
Biel, W. ;
Tokar, M. ;
Samm, U. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :1163-1170
[5]   Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET [J].
Bernert, M. ;
Wischmeier, M. ;
Huber, A. ;
Reimold, F. ;
Lipschultz, B. ;
Lowry, C. ;
Brezinsek, S. ;
Dux, R. ;
Eich, T. ;
Kallenbach, A. ;
Lebschy, A. ;
Maggi, C. ;
McDermott, R. ;
Puetterich, T. ;
Wiesen, S. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :111-118
[6]   The H-mode density limit in the full tungsten ASDEX Upgrade tokamak [J].
Bernert, M. ;
Eich, T. ;
Kallenbach, A. ;
Carralero, D. ;
Huber, A. ;
Lang, P. T. ;
Potzel, S. ;
Reimold, F. ;
Schweinzer, J. ;
Viezzer, E. ;
Zohm, H. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (01)
[7]   The effect of a metal wall on confinement in JET and ASDEX Upgrade [J].
Beurskens, M. N. A. ;
Schweinzer, J. ;
Angioni, C. ;
Burckhart, A. ;
Challis, C. D. ;
Chapman, I. ;
Fischer, R. ;
Flanagan, J. ;
Frassinetti, L. ;
Giroud, C. ;
Hobirk, J. ;
Joffrin, E. ;
Kallenbach, A. ;
Kempenaars, M. ;
Leyland, M. ;
Lomas, P. ;
Maddison, G. ;
Maslov, M. ;
McDermott, R. ;
Neu, R. ;
Nunes, I. ;
Osborne, T. ;
Ryter, F. ;
Saarelma, S. ;
Schneider, P. A. ;
Snyder, P. ;
Tardini, G. ;
Viezzer, E. ;
Wolfrum, E. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (12)
[8]  
Breslau J., 2018, Transp. [Computer Software], DOI DOI 10.11578/DC.20180627.4
[9]   Generalization of the Heuristic Drift SOL model for finite collisionality and effect on flow shearing rate vs. interchange growth rate [J].
Brown, A. O. ;
Goldston, R. J. .
NUCLEAR MATERIALS AND ENERGY, 2021, 27
[10]   The development of a Sustained High Power Density (SHPD) facility [J].
Brown, T. ;
Menard, J. E. ;
Zhai, Y. ;
Majeski, R. ;
Rana, C. ;
McIntyre, P. .
FUSION ENGINEERING AND DESIGN, 2021, 168