Multi-level Feature Maps Attention for Monocular Depth Estimation

被引:0
作者
Lee, Seunghoon [1 ]
Lee, Minhyeok [1 ]
Lee, Sangyoon [1 ]
机构
[1] Yonsei Univ, Seoul, South Korea
来源
2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-ASIA (ICCE-ASIA) | 2021年
关键词
Deep Learning; Monocular Depth Estimation;
D O I
10.1109/ICCE-Asia53811.2021.9641955
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monocular depth estimation is a fundamental task in autonomous driving, robotics, virtual reality. Monocular depth estimation is attracting research due to the efficiency of predicting depth map from a single RGB image. However, Monocular depth estimation is an ill-posed problem and is sensitive to image compositions such as light condition, occlusion, noise. We propose an encoder-decoder based network that uses multi-level attention and aggregate densely weighted feature map. Our model is evaluated on NYU Depth v2. Experimental results demonstrated that our model achieves promising performance.
引用
收藏
页数:4
相关论文
共 12 条
[1]  
[Anonymous], 2005, NIPS
[2]  
Eigen D, 2014, ADV NEUR IN, V27
[3]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[4]   DepthTransfer: Depth Extraction from Video Using Non-Parametric Sampling [J].
Karsch, Kevin ;
Liu, Ce ;
Kang, Sing Bing .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (11) :2144-2158
[5]   1-Day Learning, 1-Year Localization: Long-Term LiDAR Localization Using Scan Context Image [J].
Kim, Giseop ;
Park, Byungjae ;
Kim, Ayoung .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02) :1948-1955
[6]   A novel algorithm for estimation of depth map using image focus for 3D shape recovery in the presence of noise [J].
Malik, Aamir Saeed ;
Choi, Tae-Sun .
PATTERN RECOGNITION, 2008, 41 (07) :2200-2225
[7]   Deep learning for monocular depth estimation: A review [J].
Ming, Yue ;
Meng, Xuyang ;
Fan, Chunxiao ;
Yu, Hui .
NEUROCOMPUTING, 2021, 438 :14-33
[8]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[9]   Indoor Segmentation and Support Inference from RGBD Images [J].
Silberman, Nathan ;
Hoiem, Derek ;
Kohli, Pushmeet ;
Fergus, Rob .
COMPUTER VISION - ECCV 2012, PT V, 2012, 7576 :746-760
[10]   CBAM: Convolutional Block Attention Module [J].
Woo, Sanghyun ;
Park, Jongchan ;
Lee, Joon-Young ;
Kweon, In So .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :3-19