Shimura curves in the Prym locus

被引:11
作者
Colombo, Elisabetta [1 ]
Frediani, Paola [2 ]
Ghigif, Alessandro [2 ]
Penegini, Matteo [3 ]
机构
[1] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
[2] Univ Pavia, Dipartimento Matemat, Via Ferrata 5, I-27100 Pavia, Italy
[3] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
关键词
Shimura varieties; Prym varieties; Prym locus; GENERIC TORELLI THEOREM; 2ND GAUSSIAN MAP; MODULI SPACE; VARIETIES; DIMENSION;
D O I
10.1142/S0219199718500098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Shimura curves of PEL type in A(g) generically contained in the Prym locus. We study both the unramified Prym locus, obtained using etale double covers, and the ramified Prym locus, corresponding to double covers ramified at two points. In both cases, we consider the family of all double covers compatible with a fixed group action on the base curve. We restrict to the case where the family is one-dimensional and the quotient of the base curve by the group is P-1. We give a simple criterion for the image of these families under the Prym map to be a Shimura curve. Using computer algebra we check all the examples obtained in this way up to genus 28. We obtain 43 Shimura curves contained in the unramified Prym locus and 9 families contained in the ramified Prym locus. Most of these curves are not generically contained in the Jacobian locus.
引用
收藏
页数:34
相关论文
共 49 条
  • [1] [Anonymous], 2017, GAP GROUPS ALG PROGR
  • [2] Arbarello E., 1985, Fundamental Principles of Mathematical Sciences, V267
  • [3] Arbarello E, 2011, GRUNDLEHR MATH WISS, V268, P1, DOI 10.1007/978-3-540-69392-5_1
  • [4] BEAUVILLE A, 1977, ANN SCI ECOLE NORM S, V10, P309
  • [5] PRYM VARIETIES AND SCHOTTKY PROBLEM
    BEAUVILLE, A
    [J]. INVENTIONES MATHEMATICAE, 1977, 41 (02) : 149 - 196
  • [6] Birkenhake C., 2004, FUNDAMENTAL PRINCIPL, V302
  • [7] Birman JS., 1974, Braids, links and mapping class group (Annals of Mathematics Studies), pix+228
  • [8] THE EQUISYMMETRIC STRATIFICATION OF THE MODULI SPACE AND THE KRULL DIMENSION OF MAPPING CLASS-GROUPS
    BROUGHTON, SA
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1990, 37 (02) : 101 - 113
  • [9] Genus stabilization for the components of moduli spaces of curves with symmetries
    Catanese, Fabrizio
    Loenne, Michael
    Perroni, Fabio
    [J]. ALGEBRAIC GEOMETRY, 2016, 3 (01): : 23 - 49
  • [10] Irreducibility of the space of dihedral covers of the projective line of a given numerical type
    Catanese, Fabrizio
    Loenne, Michael
    Perroni, Fabio
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2011, 22 (03) : 291 - 309