Existence of triangular Lie bialgebra structures

被引:8
作者
Feldvoss, J [1 ]
机构
[1] Univ Hamburg, Math Seminar, D-20146 Hamburg, Germany
关键词
D O I
10.1016/S0022-4049(97)00128-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize finite-dimensional Lie algebras over an algebraically closed field of arbitrary characteristic which admit a non-trivial (quasi-) triangular Lie bialgebra structure. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 12 条
[1]   Lie bialgebra quantizations of the oscillator algebra and their universal R-matrices [J].
Ballesteros, A ;
Herranz, FJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (15) :4307-4320
[2]  
BELAVIN AA, 1982, FUNCT ANAL APPL+, V16, P159
[3]  
BOURBAKI N, 1974, ALGEBRA, V1
[4]  
Chari V., 1995, GUIDE QUANTUM GROUPS
[5]   EXISTENCE OF A LIE BIALGEBRA STRUCTURE ON EVERY LIE-ALGEBRA [J].
DESMEDT, V .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 31 (03) :225-231
[6]  
Drinfeld V.G., 1987, P INT C MATH BERK 19, V1, P798
[7]  
DZHUMADILDAEV AS, 1993, ISRAEL MATH C P, V7, P13
[8]  
Frenkel I., 1988, VERTEX OPERATOR ALGE
[9]   PHYSICS FOR ALGEBRAISTS - NONCOMMUTATIVE AND NONCOCOMMUTATIVE HOPF-ALGEBRAS BY A BICROSSPRODUCT CONSTRUCTION [J].
MAJID, S .
JOURNAL OF ALGEBRA, 1990, 130 (01) :17-64
[10]   A CLASS OF INFINITE-DIMENSIONAL LIE BIALGEBRAS CONTAINING THE VIRASORO ALGEBRA [J].
MICHAELIS, W .
ADVANCES IN MATHEMATICS, 1994, 107 (02) :365-392