Lignin-Graft-Poly(lactic-co-glycolic) Acid Biopolymers for Polymeric Nanoparticle Synthesis

被引:25
作者
Astete, Carlos E. [1 ,2 ]
De Mel, Judith U. [3 ]
Gupta, Sudipta [3 ]
Noh, YeRim [3 ]
Bleuel, Markus [4 ]
Schneider, Gerald J. [3 ]
Sabliov, Cristina M. [1 ,2 ]
机构
[1] Louisiana State Univ, Biol & Agr Engn Dept, Baton Rouge, LA 70803 USA
[2] LSU Ag Ctr, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA
[4] NIST, NIST Ctr Neutron Res A235, Gaithersburg, MD 20988 USA
基金
美国国家卫生研究院; 美国食品与农业研究所; 美国国家科学基金会;
关键词
ANGLE NEUTRON-SCATTERING; LIGNIN; PLGA; DERIVATIVES; BEHAVIORS; DELIVERY; WATER; CORE;
D O I
10.1021/acsomega.0c00168
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A lignin-graft-poly(lactic-co-glycolic) acid (PLGA) biopolymer was synthesized with two types of lignin (LGN), alkaline lignin (ALGN) and sodium lignosulfonate (SLGN), at different (A/S)LGN/PLGA ratios (1:2, 1:4, and 1:6 w/w). H-1 NMR and Fourier-transform infrared spectroscopy (FT-IR) confirmed the conjugation of PLGA to LGN. The (A/S)LGN-graft-PLGA biopolymers were used to form nanodelivery systems suitable for entrapment and delivery of drugs for disease treatment. The LGN-graft-PLGA NPs were generally small (100-200 nm), increased in size with the amount of PLGA added, monodisperse, and negatively charged (-48 to -60 mV). Small-angle scattering data showed that particles feature a relatively smooth surface and a compact spherical structure with a distinct core and a shell. The core size and shell thickness varied with the LGN/PLGA ratio, and at a 1:6 ratio, the particles deviated from the core-shell structure to a complex internal structure. The newly developed (A/S)LGN-graft-PLGA NPs are proposed as a potential delivery system for applications in biopharmaceutical, food, and agricultural sectors.
引用
收藏
页码:9892 / 9902
页数:11
相关论文
共 50 条
[1]  
Agrawal A., 2014, SCI TECH J, V1, P30
[2]   Synthesis and characterization of PLGA nanoparticles [J].
Astete, Carlos E. ;
Sabliov, Cristina M. .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2006, 17 (03) :247-289
[3]   Thermally healable and remendable lignin-based materials through Diels - Alder click polymerization [J].
Buono, Pietro ;
Duval, Antoine ;
Averous, Luc ;
Habibi, Youssef .
POLYMER, 2017, 133 :78-88
[4]   New Insights on the Chemical Modification of Lignin: Acetylation versus Silylation [J].
Buono, Pietro ;
Duval, Antoine ;
Verge, Pierre ;
Averous, Luc ;
Habibi, Youssef .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (10) :5212-5222
[5]   Valorization of Kraft Lignin of Different Molecular Weights as Surfactant Agent for the Oil Industry [J].
Delgado, Nacarid ;
Ysambertt, Fredy ;
Chavez, Gerson ;
Bravo, Belgica ;
Garcia, Danny E. ;
Santos, Jorge .
WASTE AND BIOMASS VALORIZATION, 2019, 10 (11) :3383-3395
[6]  
Dumitriu S., 2013, Polymeric biomaterials
[7]   Cyclic Carbonates as Safe and Versatile Etherifying Reagents for the Functionalization of Lignins and Tannins [J].
Duval, Antoine ;
Averous, Luc .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (08) :7334-7343
[8]   A review on lignin-based polymeric, micro- and nano-structured materials [J].
Duval, Antoine ;
Lawoko, Martin .
REACTIVE & FUNCTIONAL POLYMERS, 2014, 85 :78-96
[9]   Lignin Biopolymers in the Age of Controlled Polymerization [J].
Ganewatta, Mitra S. ;
Lokupitiya, Hasala N. ;
Tang, Chuanbing .
POLYMERS, 2019, 11 (07)
[10]   Bio-Based Polymers with Potential for Biodegradability [J].
Garrison, Thomas F. ;
Murawski, Amanda ;
Quirino, Rafael L. .
POLYMERS, 2016, 8 (07)