A general principle of dendritic constancy A neuron's size- and shape-invariant excitability

被引:20
作者
Cuntz, Hermann [1 ,2 ]
Bird, Alex D. [1 ,2 ,3 ]
Mittag, Martin [2 ,3 ,4 ]
Beining, Marcel [1 ,2 ,4 ,5 ]
Schneider, Marius [1 ,2 ,3 ]
Mediavilla, Laura [1 ,2 ,3 ]
Hoffmann, Felix Z. [1 ,2 ]
Deller, Thomas [4 ]
Jedlicka, Peter [2 ,3 ,4 ]
机构
[1] Max Planck Gesell, Ernst Strungmann Inst ESI Neurosci Cooperat, D-60528 Frankfurt, Germany
[2] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany
[3] Justus Liebig Univ Giessen, ICAR3R Interdisciplinary Ctr 3Rs Anim Res, D-35390 Giessen, Germany
[4] Goethe Univ, Inst Clin Neuroanat, Neurosci Ctr, D-60590 Frankfurt, Germany
[5] Max Planck Inst Brain Res, D-60438 Frankfurt, Germany
关键词
AXON INITIAL SEGMENT; SYNAPTIC INTEGRATION; PYRAMIDAL NEURONS; BASAL DENDRITES; DENTATE GYRUS; GRANULE CELLS; NMDA SPIKES; MODEL; LOCATION; MECHANISMS;
D O I
10.1016/j.neuron.2021.08.028
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Reducing neuronal size results in less membrane and therefore lower input conductance. Smaller neurons are thus more excitable, as seen in their responses to somatic current injections. However, the impact of a neuron's size and shape on its voltage responses to dendritic synaptic activation is much less understood. Here we use analytical cable theory to predict voltage responses to distributed synaptic inputs in unbranched cables, showing that these are entirely independent of dendritic length. For a given synaptic density, neuronal responses depend only on the average dendritic diameter and intrinsic conductivity. This remains valid for a wide range of morphologies irrespective of their arborization complexity. Spiking models indicate that morphology-invariant numbers of spikes approximate the percentage of active synapses. In contrast to spike rate, spike times do depend on dendrite morphology. In summary, neuronal excitability in response to distributed synaptic inputs is largely unaffected by dendrite length or complexity.
引用
收藏
页码:3647 / +
页数:24
相关论文
共 110 条
[1]   Plasticity of the Axonal Trigger Zone [J].
Adachi, Ryota ;
Yamada, Rei ;
Kuba, Hiroshi .
NEUROSCIENTIST, 2015, 21 (03) :255-265
[2]   A novel theoretical approach to the analysis of dendritic transients [J].
AgmonSnir, H .
BIOPHYSICAL JOURNAL, 1995, 69 (05) :1633-1656
[3]   Rate response of neurons subject to fast or frozen noise: From stochastic and homogeneous to deterministic and heterogeneous populations [J].
Alijani, Azadeh Khajeh ;
Richardson, Magnus J. E. .
PHYSICAL REVIEW E, 2011, 84 (01)
[4]   A Quantitative Description of Dendritic Conductances and Its Application to Dendritic Excitation in Layer 5 Pyramidal Neurons [J].
Almog, Mara ;
Korngreen, Alon .
JOURNAL OF NEUROSCIENCE, 2014, 34 (01) :182-196
[5]   Mobilizing the base of neuroscience data: the case of neuronal morphologies [J].
Ascoli, GA .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (04) :318-324
[6]   Visual system scaling in teleost fish [J].
Bakken, Trygve E. ;
Stevens, Charles F. .
JOURNAL OF COMPARATIVE NEUROLOGY, 2012, 520 (01) :142-153
[7]   Location-Dependent Excitatory Synaptic Interactions in Pyramidal Neuron Dendrites [J].
Behabadi, Bardia F. ;
Polsky, Alon ;
Jadi, Monika ;
Schiller, Jackie ;
Mel, Bartlett W. .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (07)
[8]   T2N as a new tool for robust electrophysiological modeling demonstrated for mature and adult-born dentate granule cells [J].
Beining, Marcel ;
Alberto Mongiat, Lucas ;
Schwarzacher, Stephan Wolfgang ;
Cuntz, Hermann ;
Jedlicka, Peter .
ELIFE, 2017, 6
[9]  
BEKKERS JM, 1990, PROG BRAIN RES, V83, P37
[10]   Dendritic normalisation improves learning in sparsely connected artificial neural networks [J].
Bird, Alex D. ;
Jedlicka, Peter ;
Cuntz, Hermann .
PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (08)