A Multi-Wavelength Thulium-Doped Fiber Laser Using a Photonic Crystal Fiber-Based Sagnac Loop

被引:12
作者
Li, Ting [1 ]
Yan, Fengping [1 ]
Han, Wenguo [1 ]
Feng, Ting [2 ]
Guo, Ying [1 ]
Qin, Qi [1 ]
Bai, Zhuoya [1 ]
Cheng, Dan [1 ]
Yang, Dandan [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[2] Hebei Univ, Coll Phys Sci & Technol, Photon Informat Innovat Ctr, Hebei Prov Ctr Opt Sensing Innovat, Baoding 071002, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2022年 / 14卷 / 01期
基金
中国国家自然科学基金;
关键词
Optical fiber polarization; Fiber lasers; Optical fibers; Sagnac interferometers; Optical fiber communication; Optical fiber dispersion; Couplers; Multi-wavelength fiber laser; photonic crystal fiber; Sagnac loop mirror; NPR; HIGHLY BIREFRINGENT; INTERFEROMETER;
D O I
10.1109/JPHOT.2022.3147793
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multi-wavelength thulium-doped fiber laser incorporating a photonic crystal fiber (PCF) Sagnac loop was presented and experimentally demonstrated. In the laser cavity, the Sagnac loop mirror used a 0.5 m PCF as a comb filter. A nonlinear polarization rotation (NPR)-based 600 m single-mode fiber (SMF) was used to suppress the mode competition. By adjusting the polarization controllers (PCs), up to nine stable wavelength outputs near the 2 mu m spectrum were obtained at room temperature with an optical signal-to-noise ratio (OSNR) of up to 30 dB. The channel spacing of this fiber laser is 4.88 nm, and the 10 dB bandwidth encompasses 1950.39 to 1989.43 nm.
引用
收藏
页数:7
相关论文
共 25 条
[1]   All-fiber multimode interferometer for the generation of a switchable multi-wavelength thulium-doped fiber laser [J].
Ahmad, H. ;
Sharbirin, A. S. ;
Samion, M. Z. ;
Ismail, M. F. .
APPLIED OPTICS, 2017, 56 (21) :5865-5870
[2]   1 x N (N=2, 8) Silicon Selector Switch for Prospective Technologies at the 2 μm Waveband [J].
Brian Sia, Jia Xu ;
Li, Xiang ;
Qiao, Zhongliang ;
Guo, Xin ;
Zhou, Jin ;
Littlejohns, Callum G. ;
Liu, Chongyang ;
Reed, Graham T. ;
Wang, Wanjun ;
Wang, Hong .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2020, 32 (18) :1127-1130
[3]   Numerical Insights Into the Pulse Instability in a GHz Repetition-Rate Thulium-Doped Fiber Laser [J].
Cheng, Huihui ;
Lin, Wei ;
Zhang, Yu ;
Jiang, Min ;
Luo, Wei .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (05) :1464-1470
[4]   Graphene-Based Birefringent Photonic Crystal Fiber Sensor Using Surface Plasmon Resonance [J].
Dash, Jitendra Narayan ;
Jha, Rajan .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2014, 26 (11) :1092-1095
[5]   Ultra-high tunable liquid crystal-plasmonic photonic crystal fiber polarization filter [J].
Hameed, Mohamed Farhat O. ;
Heikal, A. M. ;
Younis, B. M. ;
Abdelrazzak, Maher ;
Obayya, S. S. A. .
OPTICS EXPRESS, 2015, 23 (06) :7007-7020
[6]   Wavelength-Switchable Single-Longitudinal- Mode Thulium-Doped Fiber Laser With Sampled Fiber Bragg Grating [J].
Han, Wenguo ;
Yan, Fengping ;
Feng, Ting ;
Zhang, Luna ;
Guan, Biao ;
Qin, Qi ;
Guo, Ying ;
Li, Ting ;
Zhou, Hong ;
Suo, Yuping .
IEEE ACCESS, 2021, 9 :62212-62218
[7]   A 1.8-μm multiwavelength thulium-doped fiber laser based on a hybrid interference filter [J].
He Wei ;
Zhu Lianqing ;
Dong Mingli ;
Luo Fei .
INTERNATIONAL JOURNAL OF OPTOMECHATRONICS, 2016, 10 (3-4) :154-161
[8]   Highly Birefringent, Low-Loss, and Near-Zero Flat Dispersion ENZ Based THz Photonic Crystal Fibers [J].
Hossain, Md. Shahjalal ;
Razzak, S. M. Abdur ;
Markos, Christos ;
Nguyen Hoang Hai ;
Habib, Md. Selim ;
Habib, Md. Samiul .
IEEE PHOTONICS JOURNAL, 2020, 12 (03)
[9]   Photonic Crystal Fiber Based Biosensor for Pseudomonas Bacteria Detection: A simulation Study [J].
Jahan, N. ;
Rahman, Md M. ;
Ahsan, Mominul ;
Based, Md Abdul ;
Rana, Md Masud ;
Gurusamy, Saravanakumar ;
Haider, Julfikar .
IEEE ACCESS, 2021, 9 :42206-42215
[10]   Improvement of 2-m Thulium-Doped Fiber Lasers via ASE Suppression Using All-Solid Low-Pass Photonic Bandgap Fibers [J].
Kakaie, Zahra ;
Sharbirin, Anir Syazwan ;
Mahdiraji, Ghafour Amouzad ;
Adikan, Faisal Rafiq Mahamd ;
Ismail, Mohammad Faizal ;
Ahmade, Harith .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (22) :5686-5691