Effective Aesthetics Prediction with Multi-level Spatially Pooled Features

被引:124
作者
Hosu, Vlad [1 ]
Goldluecke, Bastian [1 ]
Saupe, Dietmar [1 ]
机构
[1] Univ Konstanz, Constance, Germany
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
基金
欧洲研究理事会;
关键词
PHOTO;
D O I
10.1109/CVPR.2019.00960
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an effective deep learning approach to aesthetics quality assessment that relies on a new type of pre-trained features, and apply it to the AVA data set, the currently largest aesthetics database. While all previous approaches miss some of the information in the original images, due to taking small crops, down-scaling or warping the originals during training, we propose the first method that efficiently supports full resolution images as an input, and can be trained on variable input sizes. This allows us to significantly improve upon the state of the art, increasing the Spearman rank-order correlation coefficient (SRCC) of ground-truth mean opinion scores (MOS) from the existing best reported of 0.612 to 0.756. To achieve this performance, we extract multi-level spatially pooled (MLSP) features from all convolutional blocks of a pre-trained InceptionResNet-v2 network, and train a custom shallow Convolutional Neural Network (CNN) architecture on these new features.
引用
收藏
页码:9367 / 9375
页数:9
相关论文
共 24 条
[1]  
[Anonymous], 2016, CVPR, DOI DOI 10.1109/CVPR.2016.60
[2]  
[Anonymous], 2017, P 31 AAAI C ART INT
[3]  
Datta R, 2006, LECT NOTES COMPUT SC, V3953, P288, DOI 10.1007/11744078_23
[4]  
Dhar S, 2011, PROC CVPR IEEE, P1657, DOI 10.1109/CVPR.2011.5995467
[5]   Blind image quality prediction by exploiting multi-level deep representations [J].
Gao, Fei ;
Yu, Jun ;
Zhu, Suguo ;
Huang, Qingming ;
Han, Qi .
PATTERN RECOGNITION, 2018, 81 :432-442
[6]  
Hii Y.-L., INT C IM PROC ICIP, P1722
[7]  
Kao YY, 2015, IEEE IMAGE PROC, P1583, DOI 10.1109/ICIP.2015.7351067
[8]  
Karayev S., 2013, ARXIV PREPRINT ARXIV
[9]  
Ke Y., 2006, P IEEE COMP SOC C CO, V1, P419
[10]  
Kinga D., 2015, INT C LEARNING REPRE, V5