Experimental Closed-Loop Excitation of Nonlinear Normal Modes on an Elastic Industrial Robot

被引:9
作者
Bjelonic, Filip [1 ]
Sachtler, Arne [1 ,2 ]
Albu-Schaffer, Alin [1 ,2 ]
Della Santina, Cosimo [1 ,3 ]
机构
[1] German Aerosp Ctr DLR, Inst Robot & Mechatron, Munchener Str 20, D-82234 Wessling, Germany
[2] Tech Univ Munich TUM, Dept Informat, Bolumannstr 3, D-85748 Garching, Germany
[3] Delft Univ Technol, Cognit Robot Dept, Mekelweg 5, NL-2628 CD Delft, Netherlands
关键词
Motion control; dynamics; modeling; control; and learning for soft robots; CONSTRAINTS; DYNAMICS; SYSTEMS;
D O I
10.1109/LRA.2022.3141156
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Adding elastic elements to the mechanical structure should enable robots to perform efficient oscillatory tasks. Still, even characterizing natural oscillations in nonlinear systems is a challenge in itself, which nonlinear modal theory promises to solve. Therein eigenmanifolds generalize eigenspaces to mechanical systems with non-Euclidean metrics and thus characterize families of oscillations that are autonomous evolutions of the robot. Eigenmanifolds likewise provide a framework for deriving feedback controllers to excite and sustain these oscillations. Nevertheless, these results have been so far essentially theoretical. They have been applied on relatively low dimensional systems and almost exclusively in simulation. We aim to bridge the theory to the real-world gap with the present work and show that we can excite nonlinear modes in complex systems. To this end, we propose control strategies that can simultaneously stabilize numerically evaluated eigenmanifolds and sustain oscillations in the presence of dissipation. We then focus on the KUKA iiwa with simulated parallel springs as an example of the highly nonlinear and articulated system. We calculate all the nonlinear modes of the system, and we use the proposed strategies to excite the associated natural oscillations.
引用
收藏
页码:1689 / 1696
页数:8
相关论文
共 29 条
[11]  
Carabin G., 2019, IFTOMM WORLD C MECH, P383
[12]  
Della Santina C., ENCY ROBOTICS, V2021
[13]  
Della Santina C., 2020, Soft Robots, P1, DOI [10.1007/978-3-642-41610-1146-1, DOI 10.1007/978-3-642-41610-1_146-1]
[14]   Actuating Eigenmanifolds of Conservative Mechanical Systems via Bounded or Impulsive Control Actions [J].
Della Santina, Cosimo ;
Calzolari, Davide ;
Giordano, Alessandro Massimo ;
Albu-Schaeffer, Alin .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) :2783-2790
[15]   Exciting Efficient Oscillations in Nonlinear Mechanical Systems Through Eigenmanifold Stabilization [J].
Della Santina, Cosimo ;
Albu-Schaeffer, Alin .
IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (06) :1916-1921
[16]  
Friedman J. H., 1977, ACM Transactions on Mathematical Software, V3, P209, DOI 10.1145/355744.355745
[17]  
Garofalo G., 2018, IFAC-PapersOnLine, V51, P73, DOI [DOI 10.1016/J.IFACOL.2018, DOI 10.1016/J.IFACOL.2018.11.520]
[18]  
Hopkins MA, 2015, IEEE INT CONF ROBOT, P5726, DOI 10.1109/ICRA.2015.7140001
[19]   An Overview on Principles for Energy Efficient Robot Locomotion [J].
Kashiri, Navvab ;
Abate, Andy ;
Abram, Sabrina J. ;
Albu-Schaffer, Alin ;
Clary, Patrick J. ;
Daley, Monica ;
Faraji, Salman ;
Furnemont, Raphael ;
Garabini, Manolo ;
Geyer, Hartmut ;
Grabowski, Alena M. ;
Hurst, Jonathan ;
Malzahn, Jorn ;
Mathijssen, Glenn ;
Remy, David ;
Roozing, Wesley ;
Shahbazi, Mohammad ;
Simha, Surabhi N. ;
Song, Jae-Bok ;
Smit-Anseeuw, Nils ;
Stramigioli, Stefano ;
Vanderborght, Bram ;
Yesilevskiy, Yevgeniy ;
Tsagarakis, Nikos .
FRONTIERS IN ROBOTICS AND AI, 2018, 5
[20]   Nonlinear normal modes, Part I: A useful framework for the structural dynamicist [J].
Kerschen, G. ;
Peeters, M. ;
Golinval, J. C. ;
Vakakis, A. F. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2009, 23 (01) :170-194