SHIFT R-CNN: DEEP MONOCULAR 3D OBJECT DETECTION WITH CLOSED-FORM GEOMETRIC CONSTRAINTS

被引:0
作者
Naiden, Andretti [1 ]
Paunescu, Vlad [1 ]
Kim, Gyeongmo [2 ]
Jeon, ByeongMoon [3 ]
Leordeanu, Marius [1 ,3 ]
机构
[1] Arnia Software, Bucharest, Romania
[2] LG Elect, Adv Camera Lab, Seoul, South Korea
[3] Univ Politehn Bucuresti, Bucharest, Romania
来源
2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2019年
关键词
Monocular 3D object detection; convolutional neural networks; autonomous driving; geometric constraints;
D O I
10.1109/icip.2019.8803397
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
We propose Shift R-CNN, a hybrid model for monocular 3D object detection, which combines deep learning with the power of geometry. We adapt a Faster R-CNN network for regressing initial 2D and 3D object properties and combine it with a least squares solution for the inverse 2D to 3D geometric mapping problem, using the camera projection matrix. The closed-form solution of the mathematical system, along with the initial output of the adapted Faster R-CNN are then passed through a final ShiftNet network that refines the result using our newly proposed Volume Displacement Loss. Our novel, geometrically constrained deep learning approach to monocular 3D object detection obtains top results on KITTI 3D Object Detection Benchmark [5], being the best among all monocular methods that do not use any pre-trained network for depth estimation.
引用
收藏
页码:61 / 65
页数:5
相关论文
共 25 条
[1]  
[Anonymous], 2016, ARXIV161200496
[2]  
[Anonymous], 2015, ABS150201852 CORR
[3]  
[Anonymous], 2018, ABS181207179 CORR
[4]  
[Anonymous], 2015, J HENAN SCI TECHNOL
[5]  
[Anonymous], 2018, ARXIV181204244
[6]  
Chen X., 2016, ABS160807711 CORR
[7]   Monocular 3D Object Detection for Autonomous Driving [J].
Chen, Xiaozhi ;
Kundu, Kaustav ;
Zhang, Ziyu ;
Ma, Huimin ;
Fidler, Sanja ;
Urtasun, Raquel .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2147-2156
[8]  
Fu H., 2018, ABS180602446 CORR
[9]  
Geiger A., 2012, C COMP VIS PATT REC
[10]  
He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]