Elliptic Curves with Surjective Adelic Galois Representations

被引:18
作者
Greicius, Aaron [1 ]
机构
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
关键词
Elliptic curves; Galois representations; l-adic; adelic; torsion; maximal subgroups; profinite;
D O I
10.1080/10586458.2010.10390639
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a number field. The Gal((K) over bar /K)-action on the torsion of an elliptic curve E/K gives rise to an adelic representation rho(E): Gal((K) over bar /K)-> GL(2)((Z) over cap). From an analysis of maximal closed subgroups of GL(2)((Z) over cap) we derive useful necessary and sufficient conditions for rho(E) to be surjective. Using these conditions, we compute an example of a number field K and an elliptic curve E/K that admits a surjective adelic Galois representation.
引用
收藏
页码:495 / 507
页数:13
相关论文
共 11 条
[1]   Elliptic curves with no exceptional primes [J].
Duke, W .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (08) :813-818
[2]  
HARDER G, 1999, FUNDAMENTAL PRINCIPL, V322
[3]  
JONES N, 2006, ARXIVMATH0611096V1MA
[4]  
LANG S., 1976, LECT NOTES MATH, V504
[5]  
Mazur B, 1977, IHES Publ. Math., V47, P33
[6]  
Serre J.P., 1998, Res. Notes Math., V7
[7]  
SERRE JP, 1972, INVENT MATH, V15, P259
[8]  
Silverman J. H., 1994, Advanced topics in the arithmetic of elliptic curves, V151
[9]  
WILSON JS, 1998, LONDON MATH SOC MONO, V19
[10]  
ZYWINA D, ARXIV08093482V1MATHN