On the accuracy of high-order finite elements in curvilinear coordinates

被引:0
作者
Thomas, SJ [1 ]
Cyr, AS [1 ]
机构
[1] Natl Ctr Atmospher Res, Boulder, CO 80305 USA
来源
COMPUTATIONAL SCIENCE - ICCS 2005, PT 2 | 2005年 / 3515卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The governing equations for shallow water flow on the sphere are formulated in generalized curvilinear coordinates. The various analytic expressions for the differential operators are all mathematically equivalent. However, numerical approximations are not equally effective. The accuracy of high-order finite element discretizations are evaluated using the standard test problems proposed by Williamson et al (1992). The so-called strong conservation formulation is far more accurate and results in standard error metrics that are at least two orders of magnitude smaller than the weak conservation form, Jorgensen (2003), Prusa and Smolarkeiwicz (2003). Moreover, steady state solutions can be integrated much longer without filtering when time-stepping the physical velocities.
引用
收藏
页码:822 / 828
页数:7
相关论文
共 15 条
[1]  
ASSELIN R, 1972, MON WEATHER REV, V100, P487, DOI 10.1175/1520-0493(1972)100<0487:FFFTI>2.3.CO
[2]  
2
[3]  
Cockburn B, 2000, Discontinuous Galerkin Methods: Theory, Computation and Applications
[4]  
DELVILLE MO, 2002, HIGH ORDER METHODS I
[5]   Filter-based stabilization of spectral element methods [J].
Fischer, P ;
Mullen, J .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (03) :265-270
[6]   Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations [J].
Giraldo, FX ;
Hesthaven, JS ;
Warburton, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 181 (02) :499-525
[7]   On strong stability preserving time discretization methods [J].
Higueras, I .
JOURNAL OF SCIENTIFIC COMPUTING, 2004, 21 (02) :193-223
[8]  
JORGENSEN BH, 2003, R1445 RIS NAT LAB RO
[9]  
NAIR RD, 2004, IN PRESS MON WEA REV
[10]   An all-scale anelastic model for geophysical flows: dynamic grid deformation [J].
Prusa, JM ;
Smolarkiewicz, PK .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 190 (02) :601-622