Inferring gene regulation from stochastic transcriptional variation across single cells at steady state

被引:15
作者
Gupta, Anika [1 ,2 ]
Martin-Rufino, Jorge D. [1 ,3 ,4 ]
Jones, Thouis R. [1 ]
Subramanian, Vidya [1 ]
Qiu, Xiaojie [5 ,6 ]
Grody, Emanuelle, I [1 ]
Bloemendal, Alex [1 ]
Weng, Chen [1 ,3 ,4 ,5 ]
Niu, Sheng-Yong [1 ]
Min, Kyung Hoi [5 ,7 ]
Mehta, Arnav [1 ,4 ,8 ]
Zhang, Kaite [1 ]
Siraj, Layla [1 ]
Khafaji, Aziz Al' [1 ]
Sankaran, Vijay G. [1 ,3 ,4 ]
Raychaudhuri, Soumya [1 ,2 ,9 ]
Cleary, Brian [1 ]
Grossman, Sharon [1 ]
Lander, Eric S. [1 ,10 ,11 ]
机构
[1] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[2] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[3] Boston Childrens Hosp, Div Hematol Oncol, Boston, MA 02115 USA
[4] Dana Farber Canc Inst, Boston, MA 02215 USA
[5] Whitehead Inst Biomed Res, 9 Cambridge Ctr, Cambridge, MA 02142 USA
[6] MIT, HHMI, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[8] Massachusetts Gen Hosp, Dept Med, Boston, MA 02114 USA
[9] Brigham & Womens Hosp, Ctr Data Sci, Boston, MA 02115 USA
[10] MIT, Dept Biol, 77 Massachusetts Ave, Cambridge, MA 02142 USA
[11] Harvard Med Sch, Dept Syst Biol, Boston, MA 02115 USA
关键词
transcriptional bursting; gene regulation; single-cell transcriptomics; COEXPRESSION NETWORK; RNA-SEQ; EXPRESSION; NOISE; CHROMATIN; VARIABILITY; MOLECULES; INFERENCE; PROGRAMS; TOPOLOGY;
D O I
10.1073/pnas.2207392119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Regulatory relationships between transcription factors (TFs) and their target genes lie at the heart of cellular identity and function; however, uncovering these relationships is often labor-intensive and requires perturbations. Here, we propose a principled framework to systematically infer gene regulation for all TFs simultaneously in cells at steady state by leveraging the intrinsic variation in the transcriptional abundance across single cells. Through modeling and simulations, we characterize how transcriptional bursts of a TF gene are propagated to its target genes, including the expected ranges of time delay and magnitude of maximum covariation. We distinguish these temporal trends from the time-invariant covariation arising from cell states, and we delineate the experimental and technical requirements for leveraging these small but meaningful cofluctuations in the presence of measurement noise. While current technology does not yet allow adequate power for definitively detecting regulatory relationships for all TFs simultaneously in cells at steady state, we investigate a small-scale dataset to inform future experimental design. This study supports the potential value of mapping regulatory connections through stochastic variation, and it motivates further technological development to achieve its full potential.
引用
收藏
页数:10
相关论文
共 108 条
  • [1] A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response
    Adamson, Britt
    Norman, Thomas M.
    Jost, Marco
    Cho, Min Y.
    Nunez, James K.
    Chen, Yuwen
    Villalta, Jacqueline E.
    Gilbert, Luke A.
    Horlbeck, Max A.
    Hein, Marco Y.
    Pak, Ryan A.
    Gray, Andrew N.
    Gross, Carol A.
    Dixit, Atray
    Parnas, Oren
    Regev, Aviv
    Weissman, Jonathan S.
    [J]. CELL, 2016, 167 (07) : 1867 - +
  • [2] Aibar S, 2017, NAT METHODS, V14, P1083, DOI [10.1038/NMETH.4463, 10.1038/nmeth.4463]
  • [3] Perfect timing: splicing and transcription rates in living cells
    Alpert, Tara
    Herzel, Lydia
    Neugebauer, Karla M.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-RNA, 2017, 8 (02)
  • [4] [Anonymous], 2004, Molecular Biology of the Cell
  • [5] STUDY DESIGNS Studying and modelling dynamic biological processes using time-series gene expression data
    Bar-Joseph, Ziv
    Gitter, Anthony
    Simon, Itamar
    [J]. NATURE REVIEWS GENETICS, 2012, 13 (08) : 552 - 564
  • [6] Transcriptional Burst Initiation and Polymerase Pause Release Are Key Control Points of Transcriptional Regulation
    Bartman, Caroline R.
    Hamagami, Nicole
    Keller, Cheryl A.
    Giardine, Belinda
    Hardison, Ross C.
    Blobel, Gerd A.
    Raj, Arjun
    [J]. MOLECULAR CELL, 2019, 73 (03) : 519 - +
  • [7] Sequencing metabolically labeled transcripts in single cells reveals mRNA turnover strategies
    Battich, Nico
    Beumer, Joep
    de Barbanson, Buys
    Krenning, Lenno
    Baron, Chloe S.
    Tanenbaum, Marvin E.
    Clevers, Hans
    van Oudenaarden, Alexander
    [J]. SCIENCE, 2020, 367 (6482) : 1151 - +
  • [8] Control of Transcript Variability in Single Mammalian Cells
    Battich, Nico
    Stoeger, Thomas
    Pelkmans, Lucas
    [J]. CELL, 2015, 163 (07) : 1596 - 1610
  • [9] Noise in eukaryotic gene expression
    Blake, WJ
    Kærn, M
    Cantor, CR
    Collins, JJ
    [J]. NATURE, 2003, 422 (6932) : 633 - 637
  • [10] Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation
    Buenrostro, Jason D.
    Corces, M. Ryan
    Lareau, Caleb A.
    Wu, Beijing
    Schep, Alicia N.
    Aryee, Martin J.
    Majeti, Ravindra
    Chang, Howard Y.
    Greenleaf, William J.
    [J]. CELL, 2018, 173 (06) : 1535 - +