Aging effects on chemical transformation and metal(loid) removal by entrapped nanoscale zero-valent iron for hydraulic fracturing wastewater treatment

被引:53
|
作者
Sun, Yuqing [1 ,2 ]
Lei, Cheng [1 ,3 ]
Khan, Eakalak [4 ]
Chen, Season S. [1 ]
Tsang, Daniel C. W. [1 ]
Ok, Yong Sik [5 ]
Lin, Daohui [3 ]
Feng, Yujie [2 ]
Li, Xiang-dong [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
[2] Harbin Inst Technol, State Key Lab UrbanWater Resource & Environm, Harbin 150090, Heilongjiang, Peoples R China
[3] Zhejiang Univ, Dept Environm Sci, Hangzhou 310058, Zhejiang, Peoples R China
[4] North Dakota State Univ, Dept Civil & Environm Engn, Dept 2470,POB 6050, Fargo, ND 58108 USA
[5] Korea Univ, Div Environm Sci & Ecol Engn, OJERI, Seoul 02841, South Korea
基金
中国国家自然科学基金;
关键词
Nanoscale zero-valent iron; Alginate entrapment; Hydraulic fracturing; Aging effect; Chemical speciation; Metal/metalloid removal; SHALE GAS DEVELOPMENT; FLOWBACK WATER; ENZYME-ACTIVITIES; ALGINATE BEADS; NANOPARTICLES; ADSORPTION; REDUCTION; EVOLUTION; KINETICS; IMPACT;
D O I
10.1016/j.scitotenv.2017.09.332
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, alginate and polyvinyl alcohol (PVA)-alginate entrapped nanoscale zero-valent iron (nZVI) was tested for structural evolution, chemical transformation, and metals/metalloids removal (Cu(II), Cr(VI), Zn(II), and As(V)) after 1-2 month passivation in model saline wastewaters from hydraulic fracturing. X-ray diffraction analysis confirmed successful prevention of Fe-0 corrosion by polymeric entrapment. Increasing ionic strength (I) from 0 to 4.10 M (deionized water to Day-90 fracturing wastewater (FWW)) with prolonged aging time induced chemical instability of alginate due to dissociation of carboxyl groups and competition for hydrogen bonding with nZVI, which caused high Na (7.17%) and total organic carbon (24.6%) dissolution from PVA-alginate entrapped nZVI after 2-month immersion in Day-90 FWW. Compared to freshly-made beads, 2-month aging of PVA-alginate entrapped nZVI in Day-90 FWW promoted Cu(II) and Cr(VI) uptake in terms of the highest removal efficiency (84.2% and 70.8%), pseudo-second-order surface area-normalized rate coefficient k(sa) (2.09 x 10(-1) L m(-2) h(-1) and 1.84 x 10(-1) L m(-2) h(-1)), and Fe dissolution after 8-h reaction (13.9% and 8.45%). However, the same conditions inhibited Zn(II) and As(V) sequestration in terms of the lowest removal efficiency (31.2% and 39.8%) by PVA-alginate nZVI and ksa (4.74 x 10(-2) Lm(-2) h(-1) and 6.15 x 10(-2) Lm(-2) h(-1)) by alginate nZVI. The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in metals/metalloids removal by entrapped nZVI after aging was attributed to distinctive removal mechanisms: (i) enhanced Cu(II) and Cr(VI) removal by nZVI reduction with accelerated electron transfer after pronounced dissolution of non-conductive polymeric immobilization matrix; (ii) suppressed Zn(II) and As(V) removal by nZVI adsorption due to restrained mass transfer after blockage of surface-active micropores. Entrapped nZVI was chemically fragile and should be properly stored and regularly replaced for good performance. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:498 / 507
页数:10
相关论文
共 50 条
  • [1] Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater
    Sun, Yuqing
    Lei, Cheng
    Khan, Eakalak
    Chen, Season S.
    Tsang, Daniel C. W.
    Ok, Yong Sik
    Lin, Daohui
    Feng, Yujie
    Li, Xiang-dong
    CHEMOSPHERE, 2017, 176 : 315 - 323
  • [2] Removal of chlorinated organic solvents from hydraulic fracturing wastewater by bare and entrapped nanoscale zero-valent iron
    Lei, Cheng
    Sun, Yuqing
    Khan, Eakalak
    Chen, Season S.
    Tsang, Daniel C. W.
    Graham, Nigel J. D.
    Ok, Yong Sik
    Yang, Xin
    Lin, Daohui
    Feng, Yujie
    Li, Xiang-Dong
    CHEMOSPHERE, 2018, 196 : 9 - 17
  • [3] Nanoscale Zero-Valent Iron (nZVI) for Heavy Metal Wastewater Treatment: A Perspective
    Li, Shaolin
    Li, Lei
    Zhang, Weixian
    ENGINEERING, 2024, 36 : 16 - 20
  • [4] Nanoscale zero-valent iron for remediation of toxicants and wastewater treatment
    Gebre S.H.
    Environmental Technology Reviews, 2023, 12 (01) : 390 - 419
  • [5] Nanoscale Zero-Valent Iron for Sulfide Removal from Digested Piggery Wastewater
    Chaung, Sheng-Hsun
    Wu, Pei-Fung
    Kao, Yu-Lin
    Yan, Weile
    Lien, Hsing-Lung
    JOURNAL OF NANOMATERIALS, 2014, 2014
  • [6] Modeling arsenic removal by nanoscale zero-valent iron
    Umma S. Rashid
    Bernhardt Saini-Eidukat
    Achintya N. Bezbaruah
    Environmental Monitoring and Assessment, 2020, 192
  • [7] Modeling arsenic removal by nanoscale zero-valent iron
    Rashid, Umma S.
    Saini-Eidukat, Bernhardt
    Bezbaruah, Achintya N.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2020, 192 (02)
  • [8] Biochar Supported Nanoscale Zero-valent Iron Composites for the Removal of Petroleum from Wastewater
    Qin Feifei
    Xu Wenfei
    Hao Boyu
    Yin Linghao
    Song Jiayu
    Zhang Xiuxia
    ChinaPetroleumProcessing&PetrochemicalTechnology, 2021, 23 (04) : 47 - 57
  • [9] Online monitoring of the nanoscale zero-valent iron process for trichloroethylene wastewater treatment
    R.-F. Yu
    F.-H. Chi
    W.-P. Cheng
    M.-H. Wang
    International Journal of Environmental Science and Technology, 2015, 12 : 1647 - 1656
  • [10] Biochar Supported Nanoscale Zero-valent Iron Composites for the Removal of Petroleum from Wastewater
    Qin Feifei
    Xu Wenfei
    Hao Boyu
    Yin Linghao
    Song Jiayu
    Zhang Xiuxia
    CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY, 2021, 23 (04) : 47 - 57