Electric Field Induced Dissociation of SiC Thin Films Leading to the Formation of Nanocrystalline Graphite

被引:0
作者
Akshara, Poreddy Chaitanya [1 ]
Krishna, M. Ghanashyam [1 ,2 ]
Rajaram, G. [1 ,2 ]
Rajesh, Y. [2 ]
Basu, Nilanjan [2 ]
Lahiri, Jayeeta [2 ]
机构
[1] Univ Hyderabad, Ctr Adv Studies Elect Sci & Technol, Hyderabad 500046, Telangana, India
[2] Univ Hyderabad, Sch Phys, Hyderabad 500046, Telangana, India
关键词
Nanocrystalline graphite; SiC; Electric field; Decomposition; HYDROTHERMAL SYNTHESIS; GRAPHENE;
D O I
10.1007/s13391-020-00204-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thin film Au-SiC-Cu and Au-SiC-Pt crossbar structures of 40 mu mx40 mu m size where all three layers are 100 nm thickness were fabricated by lithography. Decomposition of the SiC film is observed under the influence of an electric field (10(4)-10(6) V/cm) applied between the Au bottom electrode and the top metal electrode (Cu or Pt) for a few cycles during the course of testing as a resistive switching structure. This is evidenced using Raman mapping and Raman spectroscopy techniques. The Raman spectra reveal peaks corresponding to the D and G bands of nanocrystalline graphite. Raman mapping at different locations indicates that most of the graphite forms at the interface between the metal electrode and SiC. Raman mapping images reveal the formation of graphite on the surface. This technique is simple and enables site-selective localized growth of nanocrystalline graphite which is expected to impact many nanoscale applications. It could also be extended to form graphene at the nanoscale. [GRAPHICS] .
引用
收藏
页码:231 / 238
页数:8
相关论文
共 28 条
[1]  
Akshara P.C., 2019, ARXIV190804079PHYSIC
[2]   Single composite target magnetron sputter deposition of crystalline and amorphous SiC thin films [J].
Akshara, Poreddy Chaitanya ;
Rajaram, Guruswamy ;
Krishna, M. Ghanashyam .
MATERIALS RESEARCH EXPRESS, 2018, 5 (03)
[3]   Surface and interface study of Cu (film)/SiC (substrate) system [J].
An, Z ;
Hirai, M ;
Kusaka, M ;
Iwami, M .
APPLIED SURFACE SCIENCE, 2003, 216 (1-4) :169-173
[4]   Hydrothermal synthesis and characterization of micro to nano sized carbon particles [J].
Basavalingu, B ;
Byrappa, K ;
Yoshimura, M ;
Madhusudan, P ;
Dayananda, AS .
JOURNAL OF MATERIALS SCIENCE, 2006, 41 (05) :1465-1469
[5]   Raman characterization of defects and dopants in graphene [J].
Beams, Ryan ;
Cancado, Luiz Gustavo ;
Novotny, Lukas .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (08)
[6]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[7]   Si beam-assisted graphitization of SiC (0001) [J].
Ciochon, Piotr ;
Bodek, Lukasz ;
Garb, Mariusz ;
Zajac, Lukasz ;
Kolodziej, Jacek J. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (10)
[8]   Decomposition of silicon carbide at high pressures and temperatures [J].
Daviau, Kierstin ;
Lee, Kanani K. M. .
PHYSICAL REVIEW B, 2017, 96 (17)
[9]   Defect characterization in graphene and carbon nanotubes using Raman spectroscopy [J].
Dresselhaus, M. S. ;
Jorio, A. ;
Souza Filho, A. G. ;
Saito, R. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1932) :5355-5377
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)