Contractions of Planar Graphs in Polynomial Time

被引:0
|
作者
Kaminski, Marcin [1 ]
Paulusma, Daniel [2 ]
Thilikos, Dimitrios M. [3 ]
机构
[1] Univ Libre Bruxelles, Dept Informat, Brussels, Belgium
[2] Univ Durham, Dept Comp Sci, Durham DH1 3HP, England
[3] Natl & Kapodistrian Univ Athen, Dept Math, Athens, Greece
来源
ALGORITHMS-ESA 2010 | 2010年 / 6346卷
基金
英国工程与自然科学研究理事会;
关键词
planar graph; dual graph; contraction; topological minor; COMPUTATIONAL-COMPLEXITY; MINORS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that for every graph H, there exists a polynomial-time algorithm deciding if a planar graph can be contracted to H. We introduce contractions and topological minors of embedded (plane) graphs and show that a plane graph H is an embedded contraction of a plane graph G, if and only if, the dual of H is an embedded topological minor of the dual of G. We show how to reduce finding embedded topological minors in plane graphs to solving an instance of the disjoint paths problem. Finally, we extend the result to graphs embeddable in an arbitrary surface.
引用
收藏
页码:122 / +
页数:3
相关论文
共 50 条
  • [41] A characterization of Gorenstein planar graphs
    Tran Nam Trung
    50TH ANNIVERSARY OF GROEBNER BASES, 2018, 77 : 399 - 409
  • [42] The Graphs of Planar Soap Bubbles
    Eppstein, David
    PROCEEDINGS OF THE TWENTY-NINETH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SOCG'13), 2013, : 27 - 36
  • [43] On odd colorings of planar graphs
    Miao, Zhengke
    Sun, Lin
    Tu, Zhuojie
    Yu, Xiaowei
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [44] Rectangular drawings of planar graphs
    Rahman, MS
    Nishizeki, T
    Ghosh, S
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2004, 50 (01): : 62 - 78
  • [45] On the Queue Number of Planar Graphs
    Di Battista, Giuseppe
    Frati, Fabrizio
    Pach, Janos
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 365 - 374
  • [46] Packing trees into planar graphs
    García, A
    Hernando, C
    Hurtado, F
    Noy, M
    Tejel, J
    JOURNAL OF GRAPH THEORY, 2002, 40 (03) : 172 - 181
  • [47] Equitable partition of planar graphs
    Kim, Ringi
    Oum, Sang-il
    Zhang, Xin
    DISCRETE MATHEMATICS, 2021, 344 (06)
  • [48] Venn diagrams and planar graphs
    Chilakamarri, KB
    Hamburger, P
    Pippert, RE
    GEOMETRIAE DEDICATA, 1996, 62 (01) : 73 - 91
  • [49] Planar character-graphs
    Ebrahimi, Mahdi
    Khatami, Maryam
    Mirzaei, Zohreh
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (09) : 4079 - 4087
  • [50] PLANAR AND PROJECTIVE LINE GRAPHS OF COMAXIMAL GRAPHS OF LATTICES
    Afkhami, Mojgan
    Khashyarmanesh, Kazem
    Parsapour, Atossa
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2014, 16 : 72 - 88