Contractions of Planar Graphs in Polynomial Time

被引:0
|
作者
Kaminski, Marcin [1 ]
Paulusma, Daniel [2 ]
Thilikos, Dimitrios M. [3 ]
机构
[1] Univ Libre Bruxelles, Dept Informat, Brussels, Belgium
[2] Univ Durham, Dept Comp Sci, Durham DH1 3HP, England
[3] Natl & Kapodistrian Univ Athen, Dept Math, Athens, Greece
来源
ALGORITHMS-ESA 2010 | 2010年 / 6346卷
基金
英国工程与自然科学研究理事会;
关键词
planar graph; dual graph; contraction; topological minor; COMPUTATIONAL-COMPLEXITY; MINORS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that for every graph H, there exists a polynomial-time algorithm deciding if a planar graph can be contracted to H. We introduce contractions and topological minors of embedded (plane) graphs and show that a plane graph H is an embedded contraction of a plane graph G, if and only if, the dual of H is an embedded topological minor of the dual of G. We show how to reduce finding embedded topological minors in plane graphs to solving an instance of the disjoint paths problem. Finally, we extend the result to graphs embeddable in an arbitrary surface.
引用
收藏
页码:122 / +
页数:3
相关论文
共 50 条
  • [31] LIGHT GRAPHS IN PLANAR GRAPHS OF LARGE GIRTH
    Hudak, Peter
    Macekova, Maria
    Madaras, Tomas
    Siroczki, Pavol
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (01) : 227 - 238
  • [32] The monadic second-order logic of graphs XII: planar graphs and planar maps
    Courcelle, B
    THEORETICAL COMPUTER SCIENCE, 2000, 237 (1-2) : 1 - 32
  • [33] New Linear-Time Algorithms for Edge-Coloring Planar Graphs
    Richard Cole
    Łukasz Kowalik
    Algorithmica, 2008, 50 : 351 - 368
  • [34] New linear-time algorithms for edge-coloring planar graphs
    Cole, Richard
    Kowalik, Lukasz
    ALGORITHMICA, 2008, 50 (03) : 351 - 368
  • [35] The vertex colourability problem for {claw, butterfly}-free graphs is polynomial-time solvable
    Malyshev, D. S.
    OPTIMIZATION LETTERS, 2021, 15 (02) : 311 - 326
  • [36] ON THE ANGULAR RESOLUTION OF PLANAR GRAPHS
    MALITZ, S
    PAPAKOSTAS, A
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (02) : 172 - 183
  • [37] ON THE QUEUE NUMBER OF PLANAR GRAPHS
    Di Battista, Giuseppe
    Frati, Fabrizio
    Pach, Janos
    SIAM JOURNAL ON COMPUTING, 2013, 42 (06) : 2243 - 2285
  • [38] Acyclic edge colorings of planar graphs and seriesparallel graphs
    Hou JianFeng
    Wu JianLiang
    Liu GuiZhen
    Liu Bin
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (03): : 605 - 616
  • [39] Planar drawings of plane graphs
    Nakano, S
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2000, E83D (03) : 384 - 391
  • [40] Adjacency posets of planar graphs
    Felsner, Stefan
    Li, Ching Man
    Trotter, William T.
    DISCRETE MATHEMATICS, 2010, 310 (05) : 1097 - 1104