Lactobacillus mediates the expression of NPC1L1, CYP7A1, and ABCG5 genes to regulate cholesterol

被引:27
作者
Cao, Kaihui [1 ]
Zhang, Kaiping [2 ]
Ma, Muran [1 ]
Ma, Junjie [1 ]
Tian, Jianjun [1 ]
Jin, Ye [1 ]
机构
[1] Inner Mongolia Agr Univ, Coll Food Sci & Technol, Hohhot 010000, Inner Mongolia, Peoples R China
[2] Inner Mongolia Business & Trade Vocat Coll, Dept Cooking & Food Proc, Hohhot, Peoples R China
基金
中国国家自然科学基金;
关键词
cholesterol; lactobacillus; mechanism; regulation; MESSENGER-RNA EXPRESSION; LIVER-X-RECEPTOR; PICK C1-LIKE 1; REDUCES CHOLESTEROL; METABOLISM; ACID; ABSORPTION; ASSIMILATION; MICE; TRANSCRIPTION;
D O I
10.1002/fsn3.2600
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Hypercholesterolemia is the main cause of cardiovascular disease worldwide, and the regulation of cholesterol homeostasis is essential for human health. Lactobacillus is present in large quantities in the human intestine. As the normal flora in the gut, lactobacillus plays an important role in regulating metabolism in the human body. Lactobacillus can regulate the cholesterol content by regulating the expression of genes involved in cholesterol synthesis, metabolism, and absorption. This article reviews the biological effects and mechanisms of lactobacillus that mediate the expression of NPC1L1, CYP7A1, ABCG5, ABCG8, and other genes to inhibit cholesterol absorption, and discusses the mechanism of reducing cholesterol by lactobacillus in cells in vitro, to provide a theoretical basis for the development and utilization of lactobacillus resources.
引用
收藏
页码:6882 / 6891
页数:10
相关论文
共 59 条
[1]   Regulation of cholesterol 7α-hydroxylase mRNA expression in C57BL/6 mice fed an atherogenic diet [J].
Ando, H ;
Tsuruoka, S ;
Yamamoto, H ;
Takamura, T ;
Kaneko, S ;
Fujimura, A .
ATHEROSCLEROSIS, 2005, 178 (02) :265-269
[2]  
Anila K., 2016, J NUTR FOOD SCI, V6, P1, DOI [DOI 10.4172/2155-9600.1000467, 10.4172/2155-9600.1000467]
[3]   NPC1L1 and cholesterol transport [J].
Betters, Jenna L. ;
Yu, Liqing .
FEBS LETTERS, 2010, 584 (13) :2740-2747
[4]  
Blanc M., 2011, NATURE PRECEDINGS, V59, P473, DOI [10.1038/npre.2011.6315, DOI 10.1038/NPRE.2011.6315]
[5]   Both the Peroxisome Proliferator-Activated Receptor δ Agonist, GW0742, and Ezetimibe Promote Reverse Cholesterol Transport in Mice by Reducing Intestinal Reabsorption of HDL-Derived Cholesterol [J].
Briand, Francois ;
Naik, Snehal U. ;
Fuki, Ilia ;
Millar, John S. ;
Macphee, Colin ;
Walker, Max ;
Billheimer, Jeffrey ;
Rothblat, George ;
Rader, Daniel J. .
CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2009, 2 (02) :127-133
[6]   LIPOPROTEIN RECEPTORS IN THE LIVER - CONTROL SIGNALS FOR PLASMA-CHOLESTEROL TRAFFIC [J].
BROWN, MS ;
GOLDSTEIN, JL .
JOURNAL OF CLINICAL INVESTIGATION, 1983, 72 (03) :743-747
[7]   The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J].
Brown, MS ;
Goldstein, JL .
CELL, 1997, 89 (03) :331-340
[8]   Polyphenol Effects on Cholesterol Metabolism via Bile Acid Biosynthesis, CYP7A1: A Review [J].
Chambers, Karen F. ;
Day, Priscilla E. ;
Aboufarrag, Hassan T. ;
Kroon, Paul A. .
NUTRIENTS, 2019, 11 (11)
[9]   Regulation of the Lactobacillus Strains on HMGCoA Reductase Gene Transcription in Human HepG2 Cells via Nuclear Factor-κB [J].
Chen, Kun ;
Li, Shaocong ;
Chen, Fang ;
Li, Jun ;
Luo, Xuegang .
JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2016, 26 (02) :402-407
[10]   An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults [J].
Costabile, Adele ;
Buttarazzi, Ivan ;
Kolida, Sofia ;
Quercia, Sara ;
Baldini, Jessica ;
Swann, Jonathan R. ;
Brigidi, Patrizia ;
Gibson, Glenn R. .
PLOS ONE, 2017, 12 (12)