Fiber optic coupled surface plasmon resonance sensor based Ag-TiO2 films for hydrogen detection

被引:17
|
作者
Deng, Yali [1 ]
Li, Mei [1 ]
Cao, Wen [2 ]
Wang, Ming [2 ]
Hao, Hui [1 ]
Xia, Wei [1 ]
Su, Fu [3 ]
机构
[1] Nanjing Normal Univ, Sch Comp & Elect Informat, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Jiangsu Key Lab Optoelect Technol, Nanjing 210023, Peoples R China
[3] Nanjing Normal Univ, Sch Chem & Mat Sci, Nanjing 210023, Peoples R China
关键词
Gas sensor; Surface plasmon resonance; Fiber optic sensor; TiO2; film;
D O I
10.1016/j.yofte.2021.102616
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose and demonstrate the fiber optic Surface Plasmon Resonance (SPR) for hydrogen sensing based on Ag/TiO(2)( )at the telecommunications wavelength of 1550 nm. The sensor using TiO2 as a sensitive layer for hydrogen detection consists of a multilayer film of 45 nm Ag/110 nm TiO2 deposited on the coupling prism substrate. An intensity interrogation SPR with Kretschmann configuration is designed, where SPR phenomenon will occur at the interface of the Ag/TiO2 film, and the hydrogen concentration will be detected by measuring the change in the reflected intensity. The sensitivity of the sensor is optimal at an Ag/TiO2 thickness. Simulation and experimental results demonstrate that the fiber-optic SPR sensor developed provides hydrogen sensing and has a high sensitivity to a hydrogen concentration ranging between 14.7% and 25% Hydrogen in Air, reaching 523nW/%.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Fiber-Optic Surface Plasmon Resonance Sensor for Trace Cadmium-Ion Detection Based on Ag-PVA/TiO2 Sensing Membrane
    Li, Ting
    Feng, Wenlin
    IEEE SENSORS JOURNAL, 2021, 21 (17) : 18650 - 18655
  • [2] Fiber optic sensor based on surface plasmon resonance with nanoparticle films
    Sharma, AK
    Gupta, BD
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2005, 3 (01) : 30 - 37
  • [3] Fiber Optic Surface Plasmon Resonance based Ethanol Sensor
    Verma, Roli
    Gupta, B. D.
    PHOTONIC INSTRUMENTATION ENGINEERING, 2014, 8992
  • [4] Copper-multiwalled carbon nanotubes decorated fiber-optic surface plasmon resonance sensor for detection of trace hydrogen sulfide gas
    Liu, Yushan
    Chen, Yuhao
    Li, Cheng
    Yang, Xiaozhan
    OPTICAL FIBER TECHNOLOGY, 2023, 76
  • [5] Surface Plasmon Resonance-Based Fiber Optic Sensor for the Detection of Low Concentrations of Ammonia Gas
    Mishra, Satyendra Kumar
    Bhardwaj, Shivani
    Gupta, Banshi Dhar
    IEEE SENSORS JOURNAL, 2015, 15 (02) : 1235 - 1239
  • [6] Analysis of nanoparticle-based surface plasmon resonance fiber optic sensor
    Ciprian, Dalibor
    Hlubina, Petr
    MATERIALS AND APPLICATIONS FOR SENSORS AND TRANSDUCERS III, 2014, 605 : 131 - 134
  • [7] Fiber-optic refractive index sensor based on surface plasmon resonance
    Hlubina, Petr
    Ciprian, Dalibor
    Kadulova, Miroslava
    PHOTONICS, DEVICES, AND SYSTEMS VI, 2015, 9450
  • [8] High-Performance Tapered Fiber Surface Plasmon Resonance Sensor Based on the Graphene/Ag/TiO2 Layer
    Wang, Dan
    Li, Wei
    Zhang, Qinrong
    Liang, Benquan
    Peng, Zhenkai
    Xu, Jie
    Zhu, Chen
    Li, Jinze
    PLASMONICS, 2021, 16 (06) : 2291 - 2303
  • [9] Surface plasmon resonance based fiber optic sensor with double resonance dips
    Sharma, Navneet K.
    Rani, Mahima
    Sajal, Vivek
    SENSORS AND ACTUATORS B-CHEMICAL, 2013, 188 : 326 - 333
  • [10] A FIBER-OPTIC ALCOHOL SENSOR BASED ON SURFACE PLASMON RESONANCE
    Lin, Yu-Cheng
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2014, 56 (03) : 766 - 769