On Wiener Index of Graphs and Their Line Graphs

被引:0
作者
Cohen, Nathann [2 ,3 ]
Dimitrov, Darko [4 ]
Krakovski, Roi [5 ]
Skrekovski, Riste [1 ,6 ]
Vukasinovic, Vida
机构
[1] Inst Math Phys & Mech, Ljubljana 1111, Slovenia
[2] UNSA, I3S, CNRS, F-06902 Sophia Antipolis, France
[3] INRIA, F-06902 Sophia Antipolis, France
[4] Free Univ Berlin, Inst Informat, D-14195 Berlin, Germany
[5] Ben Gurion Univ Negev, Dept Comp Sci, IL-84105 Beer Sheva, Israel
[6] Jozef Stefan Inst, Comp Syst Dept, Ljubljana 1000, Slovenia
关键词
TOPOLOGICAL INDEXES; TREES; SYSTEMS; NUMBER;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Wiener index of a graph G, denoted by W(G), is the sum of distances between all pairs of vertices in G. In this paper, we consider the relation between the Wiener index of a graph G and its line graph L(G). We show that if G is of minimum degree at least two, then W(G) <= W (L(G)). We prove that for every non-negative integer go, there exists g > g(0), such that there are infinitely many graphs G of girth g, satisfying W(G) = W(L(G)). This partially answers a question raised by Dobrynin and Mel'nikov [10] and encourages us to conjecture that the answer to a stronger form of their question is affirmative.
引用
收藏
页码:683 / 698
页数:16
相关论文
共 26 条
  • [1] Combinatorial Nullstellensatz
    Alon, N
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) : 7 - 29
  • [2] Resistance-distance matrix: A computational algorithm and its application
    Babic, D
    Klein, DJ
    Lukovits, I
    Nikolic, S
    Trinajstic, N
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2002, 90 (01) : 166 - 176
  • [3] Bian H, 2009, MATCH-COMMUN MATH CO, V61, P631
  • [4] Buckley F., 1981, C NUMER, V32, P153
  • [5] Chen AL, 2009, MATCH-COMMUN MATH CO, V61, P623
  • [6] The edge-Wiener index of a graph
    Dankelmann, P.
    Gutman, I.
    Mukwembi, S.
    Swart, H. C.
    [J]. DISCRETE MATHEMATICS, 2009, 309 (10) : 3452 - 3457
  • [7] Dobrynin AA, 2005, MATCH-COMMUN MATH CO, V53, P209
  • [8] Wiener index for graphs and their line graphs with arbitrary large cyclomatic numbers
    Dobrynin, AA
    Mel'nikov, LS
    [J]. APPLIED MATHEMATICS LETTERS, 2005, 18 (03) : 307 - 312
  • [9] Wiener index of hexagonal systems
    Dobrynin, AA
    Gutman, I
    Klavzar, S
    Zigert, P
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2002, 72 (03) : 247 - 294
  • [10] Wiener index of trees: Theory and applications
    Dobrynin, AA
    Entringer, R
    Gutman, I
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) : 211 - 249