On positive strictly singular operators and domination

被引:3
作者
Flores, J [1 ]
Hernández, FL
机构
[1] Univ Rey Juan Carlos, Escet, Area Fis & Matemat Aplicadas, Madrid 28933, Spain
[2] Univ Complutense, Fac Matemat, Dept Anal Matemat, E-28040 Madrid, Spain
关键词
D O I
10.1023/A:1025836620741
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the domination problem by positive strictly singular % operators between Banach lattices. Precisely we show that if E and % F are two Banach lattices such that the norms on E' and F are % order continuous and E satisfies the subsequence splitting property, % and %0 less than or equal to S less than or equal to T : E --> F are two positive operators, then T strictly %singular implies S strictly singular. The special case of %endomorphisms is also considered. Applications to the class of %strictly co-singular (or Pelczynski) operators are given too.
引用
收藏
页码:73 / 80
页数:8
相关论文
共 24 条
[1]  
Abramovich YA., 1972, TEOR FUNKCII FUNKION, V15, P27
[2]  
Aliprantis C. D., 1985, POSITIVE OPERATORS
[3]   Disjointly strictly singular operators and interpolation [J].
delAmo, AG ;
Hernandez, FL ;
Ruiz, C .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :1011-1026
[4]  
DIESTEL J, 1983, SEQUENCES SERIES BAN
[5]   COMPACT-OPERATORS IN BANACH-LATTICES [J].
DODDS, PG ;
FREMLIN, DH .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 34 (04) :287-320
[6]   ON THE STRUCTURE OF NON-WEAKLY COMPACT-OPERATORS ON BANACH-LATTICES [J].
FIGIEL, T ;
GHOUSSOUB, N ;
JOHNSON, WB .
MATHEMATISCHE ANNALEN, 1981, 257 (03) :317-334
[7]   Domination by positive disjointly strictly singular operators [J].
Flores, J ;
Hernández, FL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (07) :1979-1986
[8]  
FLORES J, IN PRESS J LONDON MA
[9]  
Goldberg S., 1966, Unbounded Linear Operators
[10]  
Hernandez F.L., 1990, Acta Univ. Carol., Math. Phys., V31, P35