On dynamics of multi-solitons for the good Boussinesq (gB) equation

被引:4
作者
Vatchev, Vesselin [1 ]
Qiao, Zhijun [2 ]
机构
[1] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Brownsville, TX 78520 USA
[2] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
关键词
Fission; Fusion; Resonant solitons; Good Boussinesq equation; Hirota substitution; DE-VRIES EQUATION; HIERARCHY; EVOLUTION;
D O I
10.1016/j.wavemoti.2022.102929
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we discuss a general decomposition for solutions obtained through the Hirota substitution method from linear combinations of exponents. In particular, we study the Wronskian solutions for the good Boussinesq (gB) equation. The asymptotical analysis is carried in terms of multi-linear functions. We show that a multi-soliton solution for the good Boussinesq equation, which involves interaction of two resonant solitons, always develops singularity. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 24 条
[1]  
Ablowitz M. J., 1981, SOLITONS INVERSE SCA
[2]   On decompositions of the KdV 2-soliton [J].
Benes, N ;
Kasman, A ;
Young, K .
JOURNAL OF NONLINEAR SCIENCE, 2006, 16 (02) :179-200
[3]  
BLASZAK M, 1988, ACTA PHYS POL A, V74, P439
[4]   THE LIE-ALGEBRA STRUCTURE OF NON-LINEAR EVOLUTION-EQUATIONS ADMITTING INFINITE DIMENSIONAL ABELIAN SYMMETRY GROUPS [J].
FUCHSSTEINER, B .
PROGRESS OF THEORETICAL PHYSICS, 1981, 65 (03) :861-876
[5]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[8]   Wronskian solutions of the Boussinesq equation - solitons, negatons, positons and complexitons [J].
Li, Chun-Xia ;
Ma, Wen-Xiu ;
Liu, Xiao-Jun ;
Zeng, Yun-Bo .
INVERSE PROBLEMS, 2007, 23 (01) :279-296
[9]   Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions [J].
Ma, WX ;
You, YC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (05) :1753-1778
[10]   N-solitons, breathers and rogue waves for a generalized Boussinesq equation [J].
Ma, Yu-Lan .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2020, 97 (08) :1648-1661