Thermal and mechanical design of SPICA payload module

被引:0
|
作者
Ogawa, Hiroyuki [1 ]
Nakagawa, Takao [1 ]
Matsuhara, Hideo [1 ]
Tokoku, Chihiro [1 ]
Kawada, Mitsunobu [1 ]
Goto, Ken [1 ]
Takesuchi, Shinsuke [1 ]
Saijo, Masaru [1 ]
Shinozaki, Keisuke [2 ]
Satoh, Yohichi [2 ]
Mizutani, Tadahito [2 ]
Kaneda, Hidehiro [3 ]
Shibai, Hiroshi [4 ]
机构
[1] ISAS JAXA, Chuo Ku, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan
[2] R&D Directorate JAXA, 2-1-1 Sengen, Tsukuba, Ibaraki 3058505, Japan
[3] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan
[4] Osaka Univ, Grad Sch Sci, 1-1 Machikaneyama, Toyonaka, Osaka 5600043, Japan
关键词
Infrared; SPICA; cryogenics; radiative cooling; mechanical cooler; SYSTEM;
D O I
10.1117/12.2313308
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present an overview of the thermal and mechanical design of the Payload Module (PLM) of the next-generation infrared astronomy mission Space Infrared Telescope for Cosmology and Astrophysics (SPICA). The primary design goal of PLM is to cool the whole science assembly including a 2.5 m telescope and focal-plane instruments below 8 K. SPICA is thereby expected to have very low background conditions so that it can achieve unprecedented sensitivity in the mid- and far-infrared. PLM also provides the instruments with the 4.8 K and 1.8 K stages to cool their detectors. The SPICA cryogenic system combines passive, effective radiative cooling by multiple thermal shields and active cooling by a series of mechanical cryocoolers. The mechanical cryocoolers are required to provide 40 mW cooling power at 4.8 K and 10 mW at 1.8 K at End-of-Life (EoL). End-to-end performance of the SPICA cryocooler-chain from 300 K to 50 mK was demonstrated under the framework of the ESA CryoChain Core Technology Program (CC-CTP). In this paper, we focus on the recent progress of the thermal and mechanical design of SPICA PLM which is based on the SPICA mission proposal to ESA(1).*
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Thermal-Mechanical Design of Sandwich SiC Power Module with Micro-Channel Cooling
    Yin, Shan
    Tseng, K. J.
    Zhao, Jiyun
    2013 IEEE 10TH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS (IEEE PEDS 2013), 2013, : 535 - 540
  • [32] A Biased Random Key Heuristic Genetic Approach for the Payload Packing Design of A Satellite Module
    Li, Ziqiang
    Ruan, Wenqian
    Kang, Yu
    PROCEEDINGS OF THE 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2021, : 936 - 941
  • [33] A hybrid multi-mechanism optimization approach for the payload packing design of a satellite module
    Li, Ziqiang
    Zeng, Yuan
    Wang, Yishou
    Wang, Lu
    Song, Bowen
    APPLIED SOFT COMPUTING, 2016, 45 : 11 - 26
  • [34] Thermal architecture of the SPICA/SAFARI instrument
    Charles, Ivan
    Duband, Lionel
    Duval, Jean-Marc
    Jackson, Brian
    Jellema, Willem
    Kooijman, Peter Paul
    Luchier, Nicolas
    Tirolien, Thierry
    van Weers, Henk
    MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VI, 2012, 8452
  • [35] THERMAL GREASE MODULE CAP DESIGN.
    Anon
    IBM technical disclosure bulletin, 1986, 29 (04): : 1469 - 1470
  • [37] THERMAL DESIGN OF THE GALILEO BUS AND RETROPROPULSION MODULE
    STULTZ, JW
    JOURNAL OF SPACECRAFT AND ROCKETS, 1991, 28 (02) : 146 - 151
  • [38] Thermal design and Electromagnetic Capability design of the Microwave Power Module
    Zhang, Jinling
    Lu, Yinghua
    Yang, Biao
    Li, Rongrong
    Yang, Jinsheng
    PIERS 2008 CAMBRIDGE, PROCEEDINGS, 2008, : 121 - +
  • [39] Thermal control system of the Exoplanet Characterisation Observatory Payload: design and predictions
    Morgante, G.
    Terenzi, L.
    Eccleston, P.
    Bradshaw, T.
    Crook, M.
    Linder, M.
    Hunt, T.
    Winter, B.
    Focardi, M.
    Malaguti, G.
    Micela, G.
    Pace, E.
    Tinetti, G.
    EXPERIMENTAL ASTRONOMY, 2015, 40 (2-3) : 771 - 800
  • [40] The cryogenic system of the Herschel extended payload module
    Hohn, R
    Ruehe, W
    Jewell, C
    ADVANCES IN CRYOGENIC ENGINEERING, VOLS. 49A AND B, 2004, 710 : 505 - 512