DC-projective dimensions, Foxby equivalence and SDC-projective modules

被引:1
作者
Zhao, Liang [1 ]
Zhou, Yiqiang [2 ]
机构
[1] Anhui Univ Technol, Sch Math & Phys, Maanshan 243032, Peoples R China
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D-C-projective modules; excellent extensions; semidualizing modules; Foxby equivalence; SDC-projective modules; GORENSTEIN FLAT MODULES; HOMOLOGICAL DIMENSIONS; SEMIDUALIZING MODULE; RINGS; RESPECT;
D O I
10.1142/S0219498816501115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is a study of Ding projective modules relative to a semidualizing module and related topics. Firstly, we study D-C-projective dimensions and D-C-projective modules under change of rings. Secondly, we establish a new version of the Foxby equivalence with respect to D-C-projective modules and D-C-injective modules. Thirdly, we characterize Ding projective modules in A(C)(R) and Ding injective modules in B-C(R). At last, as applications, some new characterizations of perfect rings and quasi-Frobenius rings are given.
引用
收藏
页数:23
相关论文
共 32 条
[1]  
[Anonymous], 2003, CAMBRIDGE TRACTS MAT, DOI DOI 10.1017/CBO9780511546525
[2]  
Bass H., 1960, T AM MATH SOC, V95, P466, DOI [10.1090/S0002-9947-1960-0157984-8, DOI 10.1090/S0002-9947-1960-0157984-8]
[3]   FLAT AND PROJECTIVE CHARACTER MODULES [J].
CHEATHAM, TJ ;
STONE, DR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 81 (02) :175-177
[4]  
Christensen L. W., 2000, GORENSTEIN DIMENSION
[5]   On Gorenstein projective, injective and flat dimensions - A functorial description with applications [J].
Christensen, Lars Winther ;
Frankild, Anders ;
Holm, Henrik .
JOURNAL OF ALGEBRA, 2006, 302 (01) :231-279
[6]   STRONGLY GORENSTEIN FLAT MODULES [J].
Ding, Nanqing ;
Li, Yuanlin ;
Mao, Lixin .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 86 (03) :323-338
[7]  
Enochs E.E., 2011, RELATIVE HOMOLOGICAL
[8]  
Enochs E. E., 1993, Nanjing Daxue Xuebao Shuxue Bannian Kan, V10, P1
[9]   GORENSTEIN INJECTIVE AND PROJECTIVE-MODULES [J].
ENOCHS, EE ;
JENDA, OMG .
MATHEMATISCHE ZEITSCHRIFT, 1995, 220 (04) :611-633
[10]  
Faith C., 1976, Algebra II, Ring Theory, DOI [10.1007/978-3-642-65321-6, DOI 10.1007/978-3-642-65321-6]