A class of impulsive nonautonomous differential equations and Ulam-Hyers-Rassias stability

被引:27
作者
Wang, JinRong [1 ,2 ,3 ]
Lin, Zeng [1 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[2] Key & Special Lab Syst Optimizat & Sci Comp Guizh, Guiyang 550025, Guizhou, Peoples R China
[3] Guizhou Normal Coll, Sch Math & Comp Sci, Guiyang 550018, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
impulsive; nonautonomous differential equations; existence; Ulam-Hyers-Rassias stability; EXISTENCE;
D O I
10.1002/mma.3113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a model described by a class of impulsive nonautonomous differential equations. This new impulsive model is more suitable to show dynamics of evolution processes in pharmacotherapy than the classical one. We apply Krasnoselskii's fixed point theorem to obtain existence of solutions. Meanwhile, we mainly present the sufficient conditions on Ulam-Hyers-Rassias stability on both compact and unbounded intervals. Many analysis techniques are used to derive our results. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:868 / 880
页数:13
相关论文
共 25 条
  • [1] Stability of functional differential equations with variable impulsive perturbations via generalized ordinary differential equations
    Afonso, S. M.
    Bonotto, E. M.
    Federson, M.
    Gimenes, L. P.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (02): : 189 - 214
  • [2] Boundedness of solutions of retarded functional differential equations with variable impulses via generalized ordinary differential equations
    Afonso, S. M.
    Bonotto, E. M.
    Federson, M.
    Gimenes, L. P.
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (5-6) : 545 - 561
  • [3] Discontinuous local semiflows for Kurzweil equations leading to LaSalle's invariance principle for differential systems with impulses at variable times
    Afonso, S. M.
    Bonotto, E. M.
    Federson, M.
    Schwabik, S.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (07) : 2969 - 3001
  • [4] On the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions
    Andras, Sz.
    Kolumban, J. J.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 82 : 1 - 11
  • [5] Bainovs DD, 1992, INTEGRAL INEQUALITIE
  • [6] Bainovs DD, 1989, SERIES MODERN APPL M, V6
  • [7] Benchohras M, 2006, CONT MATH ITS APPL, V2
  • [8] Cdarius L, 2007, STABILITATEA ULAM HY
  • [9] Hyers-Ulam stability of Euler's equation
    Cimpean, Dalia Sabina
    Popa, Dorian
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (09) : 1539 - 1543
  • [10] Existence results for semilinear differential equations with nonlocal and impulsive conditions
    Fan, Zhenbin
    Li, Gang
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (05) : 1709 - 1727